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Motivation

▶ Large differences in organizational structure between/within firms (Bloom et al., 2013, 2014; Giroud et al., 2022)

▶ Given a set of workers and tasks, how to allocate them?

▶ Seminal theory: division of labor increases productivity (Smith, 1776)

✱ To make a pin, divide into 18 distinct operations, each carried out by different people

✱ Gain: human capital accumulation (Rosen, 1983; Becker and Murphy, 1992; Young, 1928)
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Routine versus Non-routine Production

▶ Explicit rules & repeat procedures Autor et al. (2003)

▶ Empirical evidence of specialization benefits

✱ Gong and Png (2024): cashiers
✱ Kohlhepp (2024): hair salon

▶ Problem-solving & complex communication
Autor et al. (2003)

▶ Cross-task feedback and knowledge sharing
are important
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Research Q: How does Team Specialization Affect Productivity?

▶ Effect of specialization on team productivity is ex-ante ambiguous

✱ Increase member’s task-specific human capital

✱ Suffer from coordination cost Becker and Murphy (1992) and learning myopia Levinthal and March (1993)

▶ This project:

✱ New data: millions of task assignments for software developers

✱ New measures: task allocation specialization and productivity

✱ New result: specialization is detrimental for software development team productivity
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Roadmap

1. Data

2. Measures

3. Facts

4. Empirical

5. Conclusion
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Data Construction

▶ Use data from the largest online coding platform GitHub

▶ 64,400 software development teams (public repository) under firms (organization) Detail

✱ E.g., Teams in Microsoft, Meta, Google

▶ 35 million code files Detail

✱ Unsupervised learning algorithm to classify into 10 task types (E.g., frontend, backend) Detail

▶ 292,840 team members (defined by GitHub) Detail

▶ 2017-2023
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Measuring Team Specialization
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Example

▶ Each member has inelastic 1 unit of labor supply (row sum)
▶ Each task requires a different unit of labor supply (column sum: task share)

Task
1 2 3

A 1/2 0 1/2 1
B 1/2 1/2 0 1
C 1/2 0 1/2 1

3/2 1/2 1
Actual(A)

Task
1 2 3

A 1/2 1/6 1/3 1
B 1/2 1/6 1/3 1
C 1/2 1/6 1/3 1

3/2 1/2 1
Generalized(G)

Task
1 2 3

A 1 0 0 1
B 1/2 1/2 0 1
C 0 0 1 1

3/2 1/2 1
Specialized(S)

▶ Define team specialization index SPE: d(A,G)d(S,G) (d: Euclidean distance)

▶ SPE is higher (more specialized) if A is far from G
Math formula Distance between two matrices
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Distribution of Team Specialization Index
Team-month level
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Measuring Productivity
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Outcome Measures
Team-month level

▶ Output Quality: stars per month (Users’ Appreciation) (Borges and Valente, 2018)

✱ 75% developers check stars before using Link

✱ Stars have monetary value ≈$0.88/star Link

▶ Output Quantity: lines-of-code (Vasilescu et al., 2015),(Casalnuovo et al., 2015),(Wagner and Ruhe, 2018)

▶ Problem-Solving Speed: time from users’ bug report to solve Example

▶ Code Acceptance Rate: success rate of member code submissions Manage to merge Fail to merge

▶ Discussion: comments sent by team members

Summary statistics
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Team Specialization and Productivity

Ymt = β1SPEmt + θi + γm + ϕmt + β2Xmt + ϵmit

▶ Ymt: outcome for team m in month t
▶ SPEmt: degree of specialization for team m in t
▶ β1: coefficient of interest
▶ θi: member fixed effect
▶ γm: team fixed effect
▶ ϕmt: team age, team size fixed effect
▶ Xmt: 10 task type distribution
▶ Standard error is clustered at team level
▶ Weight by 1/team size
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Fact 1 Higher Specialization, Lower Quality
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Output Quality

Dep Var: Log (stars per month) (1) (2) (3)

SPEmt -0.320*** -0.078*** -0.086***
(0.021) (0.007) (0.007)

Dependent mean 2.13 2.13 2.13
R-squared 0.648 0.903 0.910
Observations 1,823,750 1,823,750 1,770,310

Task type share control Y Y Y
Team age FE Y Y Y
Team size FE Y Y Y
Firm FE Y
Team FE Y Y
Member FE Y

Note. Weighted by 1/team size.
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Fact 2 Higher specialization, Lower Quantity
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Fact 3 Slower to Solve Users’ Problems
Cross-task knowledge
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Fewer Discussions between Team Members
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Fact 4 Higher Code Acceptance Rates
Task-specific knowledge
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Summary so far

▶ Negative correlation between specialization and output quality and quantity

▶ Specialized teams take longer to solve users’ problems

▶ Specialized teams have higher code acceptance rate

▶ But task allocation is endogenous

▶ Ideal experiment:

✱ Randomly change a team’s task allocation to increase or decrease specialization

✱ Impact on team productivity
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Automatic Task Assignment
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Research Design

▶ Automatic task assignment decreases specialization

✱ Evenly distributes some tasks among team members

✱ Teams enable it via configuration files

▶ Concern: Adoption is not exogenous

✱ Solution: Create a control group for teams that adopted

1. 1:1 match on team size, task types, and activities in t− 1 to t− 5

2. Use matched groups to construct treatment and control groups (98.2% matching rate)

✱ Validate with empirical test of parallel trends assumption and compare outcomes using diff-in-diff
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Specialization Decreased by 1.7%
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Output Quality (Star) Increased after 3 months
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Output Quantity (Code) Increased by 17.7 %
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Code Acceptance Rate Decreased by 2.4%
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No Effect for Problem Solving Speed
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Potential Mechanism: Discussion Increased by 14.2%
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Conclusion

▶ Measure task allocation specialization and team productivity

▶ Specialization is negatively associated with output quality and quantity

▶ Automatic assignment ↓ specialization, ↑ productivity

▶ Potential Mechanism: loss of cross-task knowledge

✱ Reduced specialization increases team discussions

✱ Future: text analysis to capture team communication patterns and knowledge spillover

▶ Specialization restricts knowledge exchange for innovation
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Thank you
jinci.liu@iies.su.se
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Outcome: Code acceptance rate

(1) (2) (3) (4)

SPE -0.010*** 0.020*** 0.015*** 0.015***
(0.002) (0.001) (0.001) (0.001)

Task type share control Y Y Y Y
Team age fixed effect Y Y Y Y
Team size fixed effect Y Y Y Y
Firm fixed effect Y Y
Project type fixed effect Y
# code submission Y Y Y
Team fixed effect Y Y
Member fixed effect Y
R-squared 0.217 0.214 0.417 0.442
Dependent mean 0.824 0.825 0.824 0.824
Observations 3,213,677 2,982,846 3,213,677 3,125,570

Graph version Note. Weighted by 1/team size
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Outcome: Problem Solving Speed

(1) (2) (3) (4)

SPE 17.655*** 11.247*** 4.411** 4.155**
(1.496) (1.540) (1.385) (1.332)

Task type share control Y Y Y Y
Team age fixed effect Y Y Y Y
Team size fixed effect Y Y Y Y
Firm fixed effect Y Y
Project type fixed effect Y
# question fixed effect Y Y Y
Team fixed effect Y Y
Member fixed effect Y
R-squared 0.166 0.166 0.355 0.398
Dependent Mean 51.182 51.372 51.182 51.579
Observations 2,364,271 2,267,892 2,364,271 2,294,737

Graph version Note. Weighted by 1/team size
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Outcome:Log (Lines of Code)

(1) (2) (3) (4)

SPE -1.224*** -1.260*** -0.954*** -0.934***
(0.021) (0.022) (0.015) (0.015)

Dependent mean 8.124 8.128 8.124 8.118
R-squared 0.398 0.403 0.597 0.616
Observations 3,212,871 2,982,107 3,212,871 3,124,751
Task type share control Y Y Y Y
Team age fixed effect Y Y Y Y
Team size fixed effect Y Y Y Y
Firm fixed effect Y Y
Project type fixed effect Y
Team fixed effect Y Y
Member fixed effect Y

Graph version Note. Weighted by 1/team size
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Team specialization index

▶ K the set of all tasks
▶ Each team m consists of Nm ∈ N members, handles a set of task Km ⊆ K
▶ Define Am to be task allocation matrix of team m

✱ Am (i, j) represents member i’s labor input on task j
▶

Am =











Am (1, 1) Am (1, 2) · · · Am
�

1, |Km|
�

Am (2, 1) Am (2, 2) · · · Am
�

2, |Km|
�

...
...

. . .
...

Am
�

Nm, 1
�

Am
�

Nm, 2
�

· · · Am
�

Nm, |Km|
�











▶ Member i’s labor share: li :=
∑

j Am (i, j)
▶ Task share: αj :=

∑

i Am (i, j)

Back

References # 32



Team specialization index

▶ Euclidean distance

d(Am − Gm) =

r

(Am(i, j)− Gm (i, j))2

d(Sm − Gm) =

√

√

√

√

√

√

√

√

∑

j






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�
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−
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









2









▶ Kullback-Leibler divergence

d(Am − Gm) =
∑

i

∑

j
Am (i, j) log
� Am (i, j)
Gm (i, j)

�

d(Sm − Gm) =
∑

j








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· log
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


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Task Type

Back
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Project Type

Back

References # 35



Specialization by Team Size
Final sample only includes teams with size >3
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Summary Statistics

N Mean St. Dev. Min Median Pctl(75) Pctl(95)

SPE 439079 0.59 0.24 0.00 0.59 0.75 1.00
Team size 439079 7.39 8.77 4 5 7.0 17
Task type 439079 4.69 2.24 2 4 6 9
Lines of code 439079 43558.76 372784.61 0.00 3325 12926 119168
Activities 439079 750.20 2322.29 0.00 381 784 2379
Monthly Stars 439079 44.55 254.21 0.00 3 18 197
Comments 439079 144.98 362.40 0.00 54 145 533
Solving time 300034 51.18 122.35 0.00 13.86 41.36 224.82
Edited files 439079 570.47 2985.87 0.00 123 363 1917
Code acceptance rate 433833 0.82 0.17 0.00 0.86 0.94 1.00
Create year 439079 2018.14 2.82 2011 2018 2020 2022

Notes: This table provides the summary statistics for the main variables of interest at the team-month level. Data is from
2017-01 to 2023-12.

Back
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What is star

Back
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Buying GitHub Stars

Back
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75% developers check stars metric before using it

Back

References # 40



Manage to merge code

Back
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Fail to merge code

Back
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Time to solve problem

Back
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What is GitHub?
▶ World’s largest open source platform for software development

▶ Focus on public teams under firms Back
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Team Member

▶ Task allocation within team members Back
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Code File

Back
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Task Type

Use Latent Dirichlet allocation (LDA) to classify code files into 10 task types

Task type Key words (LDA result) Occupational role

1 Frontend development Frontend, UI Front-end engineer
2 Server management, Platform migration Client, server DevOps engineer
3 Android mobile development Kotlin, runtime Mobile engineer
4 Cloud feature implementation Feature, sdk Cloud engineer
5 Data management Data, web Data engineer
6 Internal system management Internal, apache System Administrator
7 CLI Development and Framework User, cli Technical Writer
8 API and Backend Services API, controller Back-end engineer
9 Integration system Integration, function System Integrator
10 App Development and UI Design App, style App Developer

Word Cloud10 Data Summary
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New members start with fewer tasks
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Adding New Members

Back
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Specialization Increased by 5% in the first month

Back
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Output Quality Decreased by 10%

Back
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Teams are slightly more specialized over time
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