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Abstract

Does the division of labor increase team productivity? This paper provides new evi-
dence challenging the conventional view that specialization increases productivity. I create
a panel dataset from GitHub, covering 35 million task allocations across 64,400 software
development teams from 2017 to 2023. My result shows a negative relationship between
team specialization and various productivity metrics, including output quality, quantity,
and user issue resolution time. To identify causal effects, I exploit GitHub’s introduc-
tion of an automatic task assignment feature, which evenly distributes tasks across team
members. Using a matched difference-in-differences design, I find that adoption of this
feature reduces specialization and leads to significant gains in productivity: output quality
rises by 4%, output quantity by 21%. Team communication also increases by 13%, sug-
gesting that improved interaction and knowledge exchange are a key mechanism behind
these productivity gains. These findings highlight a trade-off in non-routine production:
while specialization increases task-specific human capital, it impedes cross-task knowledge
spillovers that are essential for innovation.
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1 Introduction

Significant differences in productivity and organizational structure exist both across and
within firms. A central question in economics is how to optimally allocate tasks among workers.
The seminal answer from Smith (1776), illustrated through the pin factory example, suggests
that the division of labor increases productivity. Later theoretical work builds on this idea,
showing that specialization helps human capital accumulation and raises productivity. !

While prior studies often assume that specialization improves productivity (Deming, 2017,
Bassi et al., 2023), direct empirical evidence remains limited. This paper studies task allocation
specialization within software development teams and finds that specialization is detrimental
to team productivity, reducing both code output quantity and quality.

The effect of specialization on team productivity is ambiguous in non-routine produc-
tion. Unlike routine production, which follows explicit rules, non-routine production requires
problem-solving and complex communication (Autor et al., 2003). This distinction creates a
trade-off: focusing on a narrow set of tasks helps workers accumulate task-specific skills and
increase productivity, but it concurrently restricts knowledge sharing and discussion across
tasks, which are essential in non-routine production (Levinthal and March, 1993). As Hayek
(1945) argued, organizations exist primarily to coordinate and combine diverse information—a
function that becomes indispensable in complex, uncertain environments.

This paper uses novel data from GitHub—the world’s largest online coding platform.
GitHub, valued at over 8 trillion USD (Hoffmann et al., 2024), plays a central role in the
software industry. I construct a panel of 35 million code files, 292,840 developers, and 64,400
teams over seven years. This granular data captures individual activity, specifying who engages
in particular files and at which point in time. It enables the construction of novel measures for
team specialization and productivity at a team-month level.

Building on this dataset, I measure team task specialization by comparing how tasks are
distributed across team members. Using a topic classification model, 1T assign millions of files
to 10 task types (e.g., frontend, backend) and compute the task distribution within each team.
I then benchmark observed allocations against two extremes: “most specialized” and “most
generalized” structures, controlling for team size and task type distribution. A higher special-
ization index indicates that a team is further from the “most generalized” counterfactual. I
link this index to multiple productivity outcomes: output quality (user appreciation), output
quantity (lines of code), problem-solving speed (issue resolution time), and code acceptance
rates. These metrics capture distinct aspects of productivity and are broadly applicable across
team-based work.

I find a negative relationship between team specialization and productivity. One standard

'For example: Rosen (1983); Baumgardner (1988); Becker and Murphy (1992)



deviation increase in the specialization index corresponds to a 2.2% decline in team output
quality and a 24.3% decline in team output quantity. These results hold after controlling for
team size, task type, team age, and team and member fixed effects. Specialized teams show a
0.47% higher acceptance rate for submitted code, suggesting stronger task-specific skills, but
also take 1.08 days longer to resolve user issues. The longer resolution time indicates that
members in specialized teams are less familiar with tasks beyond their assigned roles, reducing
the team’s functional flexibility and slowing its response to problems.

OLS estimates show that specialized teams are associated with less productivity. However,
task allocation is often endogenous, as managers may assign tasks based on past performance.
To address this concern, I exploit GitHub’s automatic task assignment feature, which ran-
domly distributes tasks across team members. Adoption of this feature reduces within-team
specialization by enforcing a more balanced allocation.

I apply a one-to-one matched differences-in-differences design, comparing teams that adopt
automatic task assignment (treatment) to observationally similar teams that do not (control),
ensuring both groups share similar characteristics. This matching approach helps to mitigate
selection bias and pre-existing differences in specialization.

Adoption of the feature decreases specialization and increases output quality but 4% and
output quantity by 21%. It also declines in the code acceptance rate (from a baseline of
0.83)and increases team communication by 13%. These results are consistent with the OLS
findings, reinforcing the conclusion that specialization harms team productivity.

This paper makes three contributions to the understanding of how organizational structure
affects productivity. First, it provides new evidence on the productivity effects of specializa-
tion in non-routine production. Prior studies focus on routine settings, such as cashiering or
salon services, where tasks are repetitive and codified, and specialization tends to improve per-
formance (Gong and Png, 2024; Kohlhepp, 2024). In contrast, software development requires
problem-solving and coordination, and I find that specialization reduces productivity by limit-
ing cross-task learning and communication. This finding also revisits classical theories of the
division of labor (Rosen, 1983; Baumgardner, 1988; Becker and Murphy, 1992), which emphasize
productivity gains from specialization. Empirical tests of these theories have been constrained
by data and identification challenges. I address this by leveraging GitHub’s automatic task
assignment feature—which randomly distributes tasks across team members—and applying a
matched difference-in-differences design to estimate the causal effect of specialization on team
performance.

Second, the paper identifies the knowledge spillover lost with particular relevance for non-

routine work. Both routine and non-routine production incur coordination costs (Becker and



Murphy, 1992; Lazear, 1995),2 but learning costs matter more in contexts like R&D, where
project trajectories are uncertain and task interdependence is high. Excessive specialization
can limit idea exchange and adaptive feedback. While Garicano and Rossi-Hansberg (2006);
Garicano and Hubbard (2009) argue that firms should adopt hierarchical knowledge structures
with specialized agents, such frameworks may not suit innovation-driven work. In software
development, specialists cannot operate in isolation and require continuous interaction across
domains. This helps explain why higher specialization slows problem-solving, consistent with
Levinthal and March (1993)’s argument that specialization can lead to organizational myopia.

Third, the paper contributes to recent literature on task complexity and coordination in the
labor market. While returns to technical skills in cognitive occupations have declined (Beaudry
et al., 2014), demand for coordination and adaptability has risen, especially in complex, fast-
evolving environments (Lee and Makridis, 2023). Complexity improves outcomes only when
paired with autonomy and effective coordination (Caines et al., 2017). My findings provide
micro-level evidence on how task structure affects performance in such settings, underscoring
the importance of cross-task learning and communication.

The remainder of this paper is structured as follows. Section 2 describes the data and
sample construction. Section 3 details the measurements. Section 4 presents the stylized facts.

Section 5 reports the empirical strategy, and Section 6 concludes.

2 Data

This section describes the data sources used to construct the final panel. The first source is
the GH Archive, which provides event-level timelines of developer activity. The second source
is developer profile pages on GitHub, which include names, profile pictures, locations, email

addresses, and brief biographies. The panel covers all public activities from 2017 to 2023.

2.1 GitHub: World’s Largest Online Coding Platform

GitHub is the world’s largest online coding platform, where developers store code, share
projects, and collaborate. As of June 2025, it hosts over 259 million public repositories and
more than 161 million users.? Its estimated global value exceeds 8 trillion USD (Hoffmann et al.,
2024). GitHub plays a central role in the open source ecosystem, providing the infrastructure

through which individuals and organizations contribute, reuse, and improve code. Technology

2Becker and Murphy (1992) identifies three types of coordination costs: (1) principal-agent conflicts as
members specialize and face weaker output incentives; (2) hold-up problems across interdependent tasks; and
(3) miscommunication or poor coordination as the number of specialists increases.

3See https://github.com/search?q=type:user, https://github.com /search?q=is:public, accessed 2024-06-29.
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giants such as Google and Microsoft maintain thousands of public repositories and increasingly
rely on open source software to drive innovation and productivity (Nagle, 2019).4

Beyond code storage, GitHub facilitates large-scale, distributed collaboration. It records
the full version history of each file, allowing developers to coordinate asynchronously across
time zones and teams. These platform-level features are further enhanced by GH Archive, a
third-party project that captures all public GitHub activity in near real time. GH Archive
preserves event-level traces even when repositories are modified or deleted, making it possible

to study open source development with precision over time.

2.1.1 Team: Repository under Organization

A GitHub repository is a project workspace where developers store code, files, and version
history. ° In this paper, I define each repository as a team—a group of developers jointly
contributing code toward a shared project, much like researchers co-authoring a paper. This
definition follows Jones (2021), who studies “team science” through patterns of scientific collab-
oration and co-authorship. ®As Figure la shows, some teams operate under organizations, such
as Microsoft or DeepSeek, while others are managed by individual users. This study focuses
on teams under organizations for three main reasons. First, organizational teams are more
likely to involve structured collaboration, with coordinated workflows across multiple develop-
ers. Second, they are typically aligned with firm-level goals such as product development or
commercialization. Third, organizations often use these teams to signal technical capability
and attract talent. Together, these features make organizational teams more representative of
real workplace environments. In contrast, individual teams often reflect personal interests or

side projects.

[Figure 1 about here.]

2.1.2 Team Members: Defined by GitHub Access Permissions

GitHub user accounts can be either human users (“developers”) or machine users (“bot”).

This paper focuses only on human users. ” To join GitHub, each developer must create a unique

4As of June 2025, Microsoft maintains 6.9k public repositories, Google 2.8k, Apple 323, Meta 149, and
Amazon 162.

5See https://docs.github.com/en/repositories

6The concept of a “team” has been defined in various ways in the economics literature. Marschak (1955)
defines a team as “an organization the members of which have only common interests,” highlighting the align-
ment of incentives. Holmstrom (1982) defines a team “rather loosely as a group of individuals who are organized
so that their productive inputs are related,” emphasizing joint production. In more recent work, such as Jones
(2021), teams are observed through patterns of co-authorship in science. Following this tradition, I define each
GitHub repository as a team—a group of developers jointly contributing code toward a shared project, much
like a group of researchers co-authoring a paper.

"Throughout the paper, “developers” refers to human users.
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login ID and can publicly display personal information—such as name, profile image, location,
firm, bio, and email—on the profile page. Many use this space to highlight programming skills
and increase visibility to potential employers. Career-related motivations often drive developers
to provide accurate personal details and include links to LinkedIn profiles or personal websites
to signal credibility and professional identity (El-Komboz and Goldbeck, 2024).

GitHub teams often include both internal members and external volunteers. While anyone
can contribute or comment on a team’s work, only internal members hold formal roles with
project-level permissions. It is important to distinguish members with internal access from
external volunteers. To identify internal team members, I rely on the author association field
defined by GitHub. This field classifies users as collaborator, contributor, mannequin, member,
none, or owner,® and has been available since 2017. It reflects a developer’s access level and
formal relationship to the team.

I define team members as users labeled owner, member, or collaborator, as these roles imply
access to the team’s codebase and active involvement in development.”® These users typically
hold write-level or higher permissions, enabling them to push code, review pull requests, manage
issues, and coordinate work. Quwner and member are formally affiliated with organizations,
while collaborator are invited contributors with similar technical access. In contrast, users
labeled contributor or none represent occasional or external engagement, without sustained
involvement or permissions. As shown in Figure 1b, each team may include both team members

and external volunteers. This paper focuses exclusively on team members. 1°

2.2 Data Construction

To construct my dataset, I combine the GH Archive with developer profile information
from the GitHub API. The GH Archive offers time-stamped records of events from all public
projects, providing a comprehensive timeline of GitHub activity since February 2011. It includes
all public information on code-related actions, such as pull request events, and tracks changes
for each file. For each event, it records the user who contributed, the number of lines of code
added, the time it took to open and close a pull request, and project-level metrics such as the
number of stars received.

To gather demographic information, I use the GitHub API to access each developer’s profile

page, which includes their profile image, location, name, email address, and biography. Career

8See GitHub Docs: author association, accessed 2024-04-26.

9This measure is preferable to GitHub’s MemberEvent, which captures only a subset of membership changes
and may include users who never actively contributed.

10Because author association is recorded only when a team member performs an observable action, the data
are missing for inactive months. I address this by imputing continuous membership between the first and last
month in which a user is observed as a team member. In practice, it is rare for a member to leave and rejoin a
team within the observation window.
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factors significantly motivate developers to contribute to online platforms such as GitHub and
Stack Exchange (El-Komboz and Goldbeck, 2024; Forderer and Burtch, 2024). This suggests
that developers have an incentive to disclose accurate personal information that may improve
their career prospects. I focus on developers who are affiliated with repositories and have per-
mission to access team files, defining these individuals as team members. For these developers,
GitHub functions more as a workspace than a hobby space, providing a greater incentive to

disclose accurate personal information that may benefit their careers.

2.3 Mapping Code Files to Tasks

I link each code file to all team members who interacted with it—whether by writing, review-
ing, or commenting. Rather than focusing solely on the original author, I treat collaboration as
the unit of analysis, reflecting the importance of feedback and code review in modern software
development. These interactions help reduce bugs and integration conflicts when merging code
into the main project.

The dataset includes 34,762,813 code filenames from 2017 to 2023. To group these files
into interpretable task types, I apply Latent Dirichlet Allocation (LDA), a widely used topic
modeling method (Blei et al., 2003). Figure 2a shows an example of the raw filenames used as

input to the model.
[Figure 2 about here.]

Selecting the number of task types involves a trade-off: too many create sparsity and mea-
surement error; too few obscure meaningful variation in task composition. I select 10 task
types to balance interpretability and precision, based on the assumption that files within the
same type require similar skills and involve lower coordination costs.!’ Appendix B provides
additional details and robustness checks. The results are robust to alternative classifications
using 8 and 12 task types.

Table 1 lists the 10 task types along with representative keywords. These include Front-end,
Back-end, server management, Android mobile development, cloud infrastructure, Ul design,
and other common software tasks. Figure 2b illustrates an example of task assignments at the
team member level, while Table 2 reports summary statistics for the share of labor allocated

to each task type across all team-months.
[Table 1 about here.]

[Table 2 about here.]

1Tn the remainder of the paper, “task” refers to the 10 task types classified using LDA.



2.4 Project Type

Given that each team may work on different projects, I collect information from each team’s
descriptions, README files and labels. For example, the Visual Studio Code team has the

2«

description “Visual Studio Code” and labels including “electron,” “microsoft,” “editor,” “type-
script,” and “visual-studio-code”. Using LDA, I categorized the team into 6 distinct project
types: App Development, Container, Data Tools, Education, Library&Framework and Web
Development. The appendix section C provides additional details about the process and word

cloud.

2.5 Gender Prediction

To predict the gender of developers based on their avatars, I select a state-of-the-art model
that closely matches the resolution and cropping methods of the training images. This chosen
model'? trains vision transformers on male and female portraits and develops a corresponding
image classifier. The model predicts the probability that an image represents a female or a male.
To find the optimal cutoff for gender classification, I use a sample labeled by some annotators
and find that the highest accuracy is achieved with a cutoft of 0.85. If the predicted probability
is above 0.85, the image will be classified as male or female; otherwise, it will be labeled as

“others”.

2.6 Race Prediction

I predict developers race and ethnicity based on their name and I choose Ethnicolr, as
developed by Laohaprapanon et al. (2017). Ethnicolr uses both first and last names to classify
individuals into four combined race and ethnicity categories: Hispanic (of any race), and non-
Hispanic Asian, Black, and White. The algorithm is trained on data from the US Census,
Florida voter registration, and Wikipedia. Each name is assigned probabilities for belonging
to each of the four categories, with the category of highest probability being designated as the

predicted race or ethnicity.

3 Measuring Task Assignment and Team Productivity

This section describes the measurement of task specialization and team productivity. 1
construct a specialization metric that captures how a team’s task allocation deviates from two

theoretical benchmarks based on team size and task distribution. Specifically, I compare each

2https:/ /huggingface.co/rizvandwiki/gender-classification, accessed 2024-04-23
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team’s actual task assignment to a generalized benchmark, where tasks are evenly distributed
across members, and a specialized benchmark, where each member focuses on a single task!3.
This relative metric allows comparison of specialization across teams with different sizes and
project types.

To measure productivity, I construct four metrics that capture different dimensions of soft-
ware team performance. These metrics address both the quantity and quality of team outputs,
making it easier to distinguish between the effects of specialization on task-specific human cap-
ital and general problem-solving capability. Although designed for software development, these

measures can be adapted to other settings.

3.1 Team Specialization Measure

Denote J the set of all task types. Each teamm = 1,..., M consists of N,, € N homogeneous

team members and handles a set of task .J,,, C J. Denote A,, € fou’” is the task assignment

for team m, where A,, (i, j) represents worker ¢’s labor input on task j.

An(1,1) AL (1,2) - An (11w
An(2,1) An(2,2) - An(2,|Jml)
A, = _ , _ .
Ay (N, 1) Ay (N 2) -+ Ay (N [ In)

Denote 1, (i) := >_; Am (i, j) to be worker ’s labor share and a,(j) := 3=, A (i,7) to be the

task demand of task j. Assume each member has one unit of inelastic labor supply.

Definition 1 Define G,, to be the most generalized task allocation matriz of team m, where

the task assignment of member i to task j is Gy, (i,]) = a;\'}—fn])

Definition 2 Define S, to be the most specialized task allocation matriz of team m.

Definition 3 Define SPE,, to be the team specialization index where SPEm:%

Consider three task assignments in Table 3. There are three members (A, B, C) and three
task types (1, 2, 3), with task demand «,, = [3/2 1/2 1} . Suppose the actual assignment(A,,)
shows how each member allocates their labor supply across tasks. The most generalized (least
specialized) assignment is when all members evenly split their labor across all tasks (G,,) as
defined in the Definition 1. In contrast, the most specialized assignment aims to assign each
member to a single task, with any residual workload allocated to another member due to

unequal task demand (S,,). Since members are homogeneous, it doesn’t matter who handles

13Some teams cannot assign one task per member because some tasks require multiple units of labor.



the leftover tasks. One interpretation of the member handling the leftover tasks (e.g., member

B) could act as a manager overseeing various tasks.
[Table 3 about here.]

To measure the degree of specialization in A,,, I calculate the distance between A,, and the
fully specialized benchmark G,,, normalized by the distance between the equal split benchmark
Sm and G,,, as defined in Definition 3. This yields the team specialization index SPE,, € [0, 1],
which captures how far the actual task allocation A,, deviates from an equal division of labor,
relative to the fully specialized benchmark. A higher value of SPE,, indicates that the team’s
task allocation is closer to full specialization.

There are many ways to measure the distance between two matrices. In this paper, I use

Euclidean distance. ' 1 calculate the team specialization index SPE,,

d(Am, Gn)

SPE,, = —d(Sm, G

where d(-,-) denotes the Euclidean distance between two task allocation matrices. The

numerator is:

The denominator, d(S,,, G,,), captures the distance between equal and fully specialized
allocations. Let a,,(j) be the total demand for task j in team m, and N,, the number of team

members. Then:

# of 1s
o (@)Y
* (o) (%)

+ (Jan()] = LamG)]) - [ @) _mem—o‘;f :

residual workload

14T only focus on teams with more than 3 members and more than 1 task type. Mathematically, when
|Kp|=1 or N,,=1,SPE,, is not well-defined. I also used Kullback-Leibler divergence to measure the distance
between the matrices, and the correlation between the specialization indices calculated with Euclidean distance
and Kullback-Leibler divergence was 0.971.
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To apply the specialization index SPE,, to empirical data, each code file is categorized into
one of the 10 task types outlined in Table 1. Using this classification, I compute the fraction
of code files associated with each task type that each team member handles every month,
which forms the matrix A,,(7,7). ® For example, consider a team with two tasks: Front-end
Development and Back-end Development. If a member exclusively works on files related to
Front-end Development, her task assignment would be represented as A,, (i) = [1 0].

Figure 3a presents the distribution of the team specialization index SPE,, for teams with
more than 3 members and more than 1 task type, illustrating both the overall distribution and
its variation by team size. I restrict the sample to teams to ensure that specialization is both
possible and meaningful. In very small teams or single-task settings, there is limited scope for
division of labor, and the specialization index becomes mechanically constrained.

Team specialization index SPE ranges from 0.36 at the 25th percentile to 0.76 at the 75th
percentile across teams and year-months, with a mean of 0.56 and a standard deviation of
0.28. Many teams adopt highly specialized structures (values near 1), while others exhibit no
specialization (value of 0). Most teams fall within the 0.4-0.7 range, suggesting a moderately
specialised division of labour.

Figure 3b shows the distribution of specialization by team size. Fach panel corresponds to
a different team size, ranging from 4 to 15 members. While the overall distribution is stable
across sizes, larger teams tend to specialize more. Figure D1 explores related patterns along

other organizational dimensions.

[Figure 3 about here.]

3.2 Team Productivity Measure

Measuring productivity is challenging. I construct four metrics to capture different dimen-
sions of team-level productivity, drawing on insights from the software engineering literature.
The metrics include output quality, output quantity, submission acceptance rate, and problem-

solving speed.

Output Quality. I measure team output quality using GitHub stars, and track the number
of stars each team receives monthly. GitHub users can give a project a star to express their
interest and appreciation. Each user can only give one star to a project, and this action is not

anonymous. GitHub uses these stars to recommend content to users on their dashboards, and

15 An alternative approach would be to measure task assignment based on the fraction of time each member
allocates to different tasks. However, I rely on the number of code files due to the challenge of precisely observing
the time spent on each file.
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they also serve as an indicator of community satisfaction. Prior work finds that 75% of devel-
opers consider a project’s star count before adoption (Borges and Valente, 2018). Additionally,
each star is estimated to carry a market value of roughly 0.88 USD (Eldeeb and Sikora, 2023).

To measure a team output quality, Figure E1 shows an example of cumulative stars over time.

Output Quantity. I measure output quantity using the number of lines of code produced
by team members each month. The relationship between quantity and productivity is difficult
to determine, as coding techniques like loops can reduce the number of lines without affecting
functionality. Despite the limitation, quantity metrics still offer valuable insights into the
volume of code generated, with the number of lines serving as a general indicator of a team’s
overall output (Vasilescu et al., 2015; Casalnuovo et al., 2015; Wagner and Ruhe, 2018).

Submission Acceptance Rate. This metric evaluates the success rate of code submissions
through pull request (PR), similar to measuring product passing rate in manufacturing. It is
calculated as the ratio of successfully merged PRs to the total number of PR submitted in a
given month. Developers create branches to isolate development work without affecting others
and then use PRs to merge those branches once complete. PR can be rejected when conflicts
arise, such as when both the PRs and target branches modify the same part of a file differently,
GitHub is unable to automatically decide which changes to keep. Additionally, PRs can fail
if developed do not adhere to branch protection rules or if they do not pass required checks.
Reviewers may also reject PRs due to issues with code quality, design, or functionality issues.
This requires developers to address feedback and update their PRs accordingly. A low PR
success rate indicates teams frequently encounter conflicts or require significant rework before

merging code. Figure E4 provides examples of the success and failure of PRs.

Problem-Solving Speed. This metric captures the duration between the creation of an issue
on GitHub and its initial closure. Users create issues to raise questions or report problems,
which are then addressed and closed by team members. Once resolved, the issue is closed,
indicating successful problem resolution. This metric is constructed by tracking issues opened
within a given month and recording the time to their first closure. It serves as an indicator
of the team’s efficiency in handling issues. Figure E5 provides an example of one issue from
opening to closing.

Descriptive statistics are provided in Table 4.

[Table 4 about here.]
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4 Stylized Facts

This section presents stylized facts about team specialization and productivity.
Fact 1 Teams become slightly more specialized over time

Figure 4 shows a binned scatter plot of team specialization over time. I only include teams
active for at least 10 months and calculate their average specialization over that period. I also
control for 10 task distribution %and team size to avoid mechanical effects from new members
or changing tasks. Over 10 months, the average team specialization index increases from 0.575
to 0.595, a 2 percentage point rise. This suggests that most of the variation in specialization is

due to differences across teams, not time trends.
[Figure 4 about here.]
Fact 2 Higher team specialization is associated with lower output quality.

Figure 5 presents a binned scatter plot showing the relationship between organizational special-
ization and output quality, measured by the log of monthly GitHub stars. To address potential
omitted variable bias, I control for several confounding factors. First, I include task demand
distribution to account for variation in project scope and complexity. Second, I add fixed effects
for team age to capture lifecycle dynamics that may jointly influence specialization and output
quality.'” Third, I control for time-invariant differences by including fixed effects for teams,
members, and team size.

After accounting for these factors, the results indicate a negative relationship between team

specialization and project quality: teams with more specialized structures exhibit lower quality.
[Figure 5 about here.]

Table 5 reports results from OLS and Poisson pseudo-maximum likelihood (PPML) regres-
sions. In the OLS models, where the dependent variable is log monthly stars, team specialization
( SPE) is negatively associated with output quality across all specifications. Column (1) shows
that a one standard deviation increase in specialization (0.26 points) is associated with a 7.98%
decrease in monthly stars. The estimated effect decreases to 2.21% in Column (4) after con-
trolling for team and member fixed effects, but remains statistically significant. The decline
in the coefficient after adding team fixed effects indicates that most of the raw negative cor-

relation is explained by differences across teams. However, the persistent negative effect even

16Task types are defined based on code file names using a topic classification model. See Section 2.3 for
details.

1TFor example, teams in active development may attract more user attention and adopt different task struc-
tures than those in maintenance.
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after controlling for both team and member fixed effects suggests that within-team increases in
specialization over time are still associated with lower output quality.

In the Poisson models, where the dependent variable is the count of monthly stars, the
negative relationship between specialization and output quality is pronounced. Column (1)
shows that a one standard deviation increase in the specialization index is associated with a
13.0% decrease in expected monthly stars. After controlling for team and member fixed effects,
the effect remains statistically significant: a one standard deviation increase in specialization is

still associated with a 4.3% decrease in output quality.
[Table 5 about here.]
Fact 3 Higher team specialization corresponds to lower output quantity.

Figure 6 illustrates the relationship between team specialization and the number of lines of code
produced by team members each month. The findings align with the specification in Figure 5,

revealing that more specialized teams tend to produce less coding output.
[Figure 6 about here.]

Table 6 reports the regression results. In the OLS models, where the dependent variable
is the log of lines of code, team specialization (SPE) is negatively associated with output
quantity across all specifications. Column (4) shows that a one standard deviation increase in
specialization (0.26 points) is associated with a 24.3% decrease in lines of code. The Poisson
models yield consistent results. Column (4) indicates that a one standard deviation increase in

specialization corresponds to a 15.8% decrease in the expected number of lines of code.

[Table 6 about here.]
Fact 4 Specialized teams achieve higher acceptance rates but take longer to resolve user issues.

Figures 7a and 7b illustrate the trade-off between task-specific and general human capital. Un-
like Figure 5, these analyses include additional fixed effects: the number of code submissions (for
acceptance rates) and the number of questions (for resolution time). This adjustment ensures
that the relationships are not driven by differences in coding activity or inquiry frequency.
Figure 7a shows that code acceptance rates increase with team specialization. This may
reflect better code from focused work—or that others are too unfamiliar with the code to
evaluate and reject it. In contrast, Figure 7b shows that specialized teams take longer to
resolve user issues. This delay likely occurs because effective problem-solving often requires

knowledge from multiple areas, such as system design, user interface, and data management.
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Figure 7c examines the relationship between team specialization and level of discussion.
Specialized teams tend to exchange fewer comments, suggesting lower levels of internal commu-
nication and knowledge sharing. This pattern supports the idea that while specialization builds

task-specific skills, it may reduce cross-task knowledge and limit diffusion within the team.
[Figure 7 about here.]

Table 7 and Table 8 present the regression results. In Column (4), a one standard devia-
tion increase in specialization is associated with a 0.39 percentage point increase in the code
acceptance rate, equivalent to a 0.47% increase relative to the mean acceptance rate of 82.4%.
However, it also leads to a 1.08-day delay in problem resolution time. These results suggest

that while specialization may improve code quality, it slows down problem-solving.
[Table 7 about here.]
[Table 8 about here.]
Fact 5 Team members have similar demographic compositions regardless of team specialization.

To measure diversity, I follow the literature on ecological diversity and use the Shannon -
Wiener Index to quantify team composition diversity. For example, the Gender Diversity Index

is calculated as: ;

H = — Z(pz lnpi)

i=1
where H' represents gender diversity index, S is the total number of different categories (e.g.,
male and female ), and p; is the proportion of individuals in the i-th gender category. This
index measures both the abundance and evenness of gender within the team. A higher gender
diversity index indicates greater diversity, meaning that the team has a more balanced gender
distribution (Krebs, 1989).

Figure 8 illustrates the relationship between organizational specialization and diversity
across two dimensions: gender and race. There is little difference in gender and race diver-
sity among teams with different levels of specialization. Teams with high specialization and

those with low specialization tend to have a similar demographic composition of people.

[Figure 8 about here.]
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5 Empirical Strategies

Descriptive evidence shows a negative correlation between specialization and team produc-
tivity. However, task allocation is often endogenous: managers may change team structures
in response to performance problems or shifts in workload. To address this concern, I exploit
a platform feature that automatically distributes tasks among eligible team members. This
assignment reduces task allocation specialization by assigning work more evenly. I implement a
matched difference-in-differences design, comparing teams that adopt this feature (treatment)
with similar teams that do not (control). Matching on pre-treatment characteristics reduces
selection bias and improves balance, enabling a more credible estimate of the effect of special-

ization on team productivity.

5.1 GitHub Automatic Assignment Feature

I exploit GitHub’s auto-assignment feature, which introduces exogenous variation in team
specialization by randomly distributing tasks among eligible team members. This system auto-
matically assigns contributors to both Pull Requests (for code review) and Issues (such as bug
reports or feature requests), replacing manual assignment with randomized allocation. Unlike
traditional workflows, where some members repeatedly handle specific types of tasks, this fea-
ture ensures a more balanced workload and uniform task exposure. Adopting the feature shifts
teams toward a more generalized task structure, reducing persistent specialization.

Teams enable this feature via configuration files, as illustrated in Figure EG. Table 9 lists

these files and explains their functions.
[Table 9 about here.]

Figure 9 compares average team characteristics by adoption status. Teams that adopt the
auto-assignment feature are significantly larger (mean size 5.47 vs. 3.96) and more active across
all metrics. They handle more tasks (4.41 vs. 3.46), submit more pull requests (25.62 vs. 15.38),
contribute more code (30,076.81 vs. 24,055.74 lines), and attract more attention from users, as
indicated by higher monthly stars (44.54 vs. 15.92). They also engage in more platform activities
(610.83 vs. 312.60 actions). These patterns suggest that adoption is concentrated among larger

and more collaborative teams, potentially to support scalable and balanced workflows.

[Figure 9 about here.]

5.2 Matched Sampling Procedure to Select Comparison Group

Given substantial baseline differences across teams, a key challenge is to identify an appropri-

ate comparison group for teams that adopt the auto-assignment feature. I address this by using
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a matched sampling procedure to construct a control group of placebo-adopting teams—teams
that did not adopt the feature but have lagged characteristics similar to those of one of the
treatment group teams with adoption. This procedure is similar to Jéger et al. (2024).

I let t denote calendar time, d the event time (i.e., the month of adoption), and k =t — d
the number of months relative to the event. For each event month d from 2017 to 2023 (For
example, 2017-12), I identify the set of teams that first adopt the auto-assignment feature,
defined as the first appearance of an automation-related configuration file described in Table 9.
Those teams are in the treatment group. For each team m that adopted the feature in d, I
record a rich set of baseline characteristics from d — 5 to d — 1. For each event month d, the
comparison group is sampled from the set of teams that never adopted the feature during the
whole sample period. I can also record baseline characteristics in from d — 5 to d — 1 for this
comparison group pool.

I implement a matched sampling procedure separately for each event month d. For each
treated team m, I select a team from the comparison group pool with similar lagged character-
istics. Specifically, I compute the mean of each team’s characteristics over this window and then
match on deciles of average team size, task types, and output levels. Rather than matching on
deciles in each period, I match on the mean value of each variable from d — 5 to d — 1. This
strategy captures persistent team characteristics while increasing the number of matched pairs.
When no exact match can be found, the adopted team m will not be included in the sample.
When multiple potential matches for an adopted team m are available, I randomly select one
team as the matched control group.

I successfully match 3,864 treated teams to control teams, achieving a 98.2% matching suc-
cess rate. Table D1 reports summary statistics for both groups at the time of auto-assignment
adoption. The two groups are well balanced across key team and performance characteristics,

including variables not directly used in the matching procedure.

5.3 Dynamic Effects

Building on the identification strategy in Sharoni (2024); Jéger et al. (2024), I estimate the
effect of automatic task assignment based on the following dynamic difference-in-differences
framework. This stacking method follows Roth (2022) to ensure a robust estimation of pre-

trends. I then estimate equation (1),

6 6
Ymdt — Ymd,d—l = Z (Sk X 1(t — dmd = k‘) + Z Bk X 1(t — dmd = k) X Treatedmd

o o (1)

+ )\f(m) + etsizemt + X/th + Emdt
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where Y4 is the outcome of interest for team m observed in month ¢ in which the team
adopted (or matched a placebo team) occurring in month d. The model includes fixed effects
for relative time J;x. The model in (1) does not include calendar year fixed effects, as calendar
time is balanced between the comparison and treatment group as a consequence of the matched
sampling procedure. Treated,,q is an indicator function for treatment status, whether team m
actually adopted the feature in month d or was chosen as a matched control. I also include firm
fixed effect Ag(,), team size fixed effect 0y4.e,,, and control for the 10 task demand X,,;.

The coefficients of interest (i, capture the effect of an actual automatic assignment feature
adoption in time k =t — d in the treatment group and are normalized to zero in kK = —1 given
the difference specification. Standard error is clustered at the matching-pair level, as suggested
by Abadie and Spiess (2022) to account for correlated shocks within observables used in the
matching.

Figure 10 reports the point estimates from equation (1). No pre-trends are reported. It
also reveals that the specialization decreases when teams adopt the automatic task assignment
features. The impact on team performance varies across different outcomes, consistent with
the descriptive patterns in Section 4. Compared to the matched control group, treated teams
exhibit higher productivity, as reflected in both output quality and quantity. At the same time,
teams that adopt automatic assignment experience lower code acceptance rates and increased

discussion activity.

[Figure 10 about here.]

5.4 Baseline Regression

As a way of summarizing the results, I use a second specification that directly compares
the pre- and post-adoption periods, rather than tracing dynamic effects over time. In this
alternative approach, the treatment indicator 7T,, turns to one after the time of the real or
placebo adoption. This allows for a more concise assessment of the impact without focusing on

the dynamic changes over time. This specification is given by

Ymdt — Ymd,d—l =0 X 1(t — dmd > 0) + 6 X 1(t — dmd > 0) X Treatedmd (2)

+ )\f(m) + etsizemt + X{mtr + Emat
I include firm fixed effect Az (,,), team size fixed effect 0y4.e,,, and control for the 10 task demand
X,ut- The standard error is clustered at the matching-pair level.
Table 10 reports the regression results. Column (1) shows a negative and statistically

significant coefficient on the specialization index (f = —0.01), indicating that teams become

less specialized following the adoption of the auto-assignment feature. Columns (2) and (3)
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show that, relative to placebo teams, treated teams experience a 4% increase in output quality
and a 21% increase in output quantity—both statistically significant and suggesting substantial
productivity gains. Consistent with Fact 4, the code acceptance rate decreases 1.2% (from a
baseline of 0.83). The effect on problem-solving speed is statistically insignificant. Finally,
Column (6) shows that team discussion increases significantly, supporting the interpretation

from Figure 7c that generalized teams engage in broader communication.

[Table 10 about here.]

6 Conclusion

This paper investigates how specialization in team task allocation affects productivity and
knowledge sharing in software development. Although the traditional view, dating back to
Smith (1776), argues that specialization raises productivity, my findings reveal a negative re-
lationship between team specialization and productivity. Excessive specialization appears to
inhibit the general human capital needed for innovative work, where next steps are uncertain
and cross-task feedback is critical.

To address endogeneity in task allocation, I exploit GitHub’s automatic task assignment
feature, which distributes tasks evenly among team members and reduces specialization. A
matched difference-in-differences analysis shows that teams become more productive when they
become less specialized.

This study also develops new empirical measures for specialization and productivity. I
construct a dataset linking team task allocations—based on the code developers produce—to
various productivity metrics. The specialization measure captures deviations from fully gener-
alized or fully specialized benchmarks, allowing for comparisons across teams and over time.
The productivity measures capture both output quantity (lines of code) and quality (project
popularity), along with finer indicators such as code acceptance rates and problem-solving
speed. Together, these measures provide a comprehensive view of how specialization shapes
innovation.

The findings highlight the organizational design in innovative industries. While earlier
research emphasizes the benefits of specialization through task-specific human capital accumu-
lation, I document an important trade-off: excessive specialization can limit the general skills
critical for complex problem-solving and knowledge integration. This distinction matters as
economies increasingly shift toward knowledge work, where solutions often require integration
across domains.

Finally, the results contribute to the broader literature on firm organization and productivity

variation. Persistent differences in organizational structures may reflect not only coordination
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costs or information frictions but also differences in optimal specialization, depending on the
production environment. Future work could extend the measurement framework developed

here to study these trade-offs across industries and types of knowledge work.
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Figure 1: Schematic Representation of GitHub Structure

(a) Organization and Team

Firm =
(Organization) ——» [ microsoft ] [ DeepSeek ]

Team
(Repository) —»

private DeepSeek-R1

Individual jinciliu.github.io

vscode

(b) Team Member and Volunteers

Firm —
(Organization)

Team

(Repository) —

synapsemi

User —_— @

Volunteers

Activities

_—
(Event) PullRequestEvent, IssuesEvent

Notes: As shown in Figure 1a, some repositories belong to the organization, while others do not. In this project,
I include only repositories affiliated with the organization to exclude those intended for individual purposes or
hobbies, such as personal websites. Figure 1b illustrates the structure within a single organization. For instance,
within Microsoft, there are multiple teams, each with various users. Some users are official team members (see
Section 2.1.2), while others are volunteers who also participate and contribute. This project focuses solely on
the activities of team members.
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Figure 2: Code File and Task-Member Snapshot

(a) Code File Example

> eslintplugin

E—— Folder : build

—_— File name: cli-build-alpine

cli: command-line interface, interact
with typing text into terminal

alpine: containers

>
>
>
> lini
>
>

- Use folder + File name
Input data: build/cli-build-alpine

(b) Task-Member Example

contor2 — author

— code

Team Month Member Task Type Labor Share
vscode 2021-05 joaomoreno 1 0.714286
vscode 2021-05 joaomoreno 4 0.285714
vscode 2021-05 isidorn 4 0.018809

vscode 2021-05

Notes: Figure 2a illustrates an example of code file names used for task type classification. The input data
consists of the folder name combined with the file name, such as “build/cli-build-alpine” in the example above.
Figure 2b presents a data snapshot of Member “joaomoreno” from Team “vscode” highlighting their labor share
in task types 4 and 1.
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Figure 3: Distribution of Team Specialization Index

(a) Specialization
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Specialization

(b) By Team Size

il
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Graphs by Team size

Notes: 1 include team-month observations with more than 3 members and more than 1 task type in a given
month. A higher index value reflects a greater degree of specialization. FigureD1 provides more details about
the distribution of the team specialization index.
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Figure 4: Team Specialization Over Time
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Notes: The figure shows a binned scatter plot illustrating the evolution of team specialization over time,
specifically for teams that are actisumve for at least 10 months, while controlling for task distribution and team
size fixed effect.

24



Figure 5: Team Specialization and Output Quality
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Notes: This figure presents a binned scatter plot, accounting for task distribution. The analysis also includes
team age, team size, member fixed effects, and team fixed effects. These fixed effects help control for differences
in member composition, team size, and the impact of team project types on team productivity. Observations are
at the individual level and are weighted by 1/team size. The graph highlights a stronger negative relationship
between specialization and output quality.
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Figure 6: Team Specialization and Output Quantity
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Notes: This figure presents a binned scatter plot, accounting for task distribution and team age. The analysis
also includes team size, member fixed effects, and team fixed effects. These fixed effects help control for
differences in member composition, team size, and the impact of team project types on team productivity.
Observations are at the individual level and are weighted by 1/team size. The graph highlights a stronger
negative relationship between specialization and output quantity.
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Figure 7: Team Specialization Trade-off
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Figure 7: Team Specialization Trade-off (cont.)

(c) Discussion
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Notes: This figure shows the correlation between team specialization and code acceptance rate (Panel 7a),
problem-solving speed (Panel 7b), average comments per question (Panel 7¢) after controlling for task demand
distribution as well as team age, team size, team, member fixed effects. The observations are at the individual
level and weighted by 1/team size.
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Figure 8: Team Specialization and Demographic Composition

(a) Gender
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Notes: The positive relationship between organizational specialization and diversity in gender (Panel 8a), and
race (Panel 8b) is presented in a binned scatter plot. I calculate each diversity index separately and exclude
teams with only one member. Gender is predicted based on developers’ profile images and names. Race is
predicted using the name. Teams with a single task are also excluded. Section 2 provides more details.
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Figure 9: Comparison of Team Characteristics by Automatic Feature Adoption
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Notes: This figure compares average team characteristics between teams that adopted the auto assignment

feature and those that did not, using data from 2017 to 2023.
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Figure 10: Dynamic Effects for Task Assignment Adoption
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Figure 10: Dynamic Effects for Automatic Assignment Adoption (cont.)
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Figure 10: Dynamic Effects for Task Assignment Adoption (cont.)
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Notes: This plot presents the effect of auto-assignment feature adoption on team specialization and productivity.
The vertical lines represent a 90% confidence interval with standard errors clustered at the matching level. The
dependent variables—team specialization index (SPE), team output quality, quantity, problem-solving time,
code acceptance rate, and communication are defined in Section 3.
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Table 1: Task Classification

Task Type Keywords (LDA result) Occupational Role
1 Frontend development Frontend, UI Front-end engineer
2 Server management, Platform migration Client, server DevOps engineer
3 Android mobile development Kotlin, runtime Mobile engineer
4  Cloud feature implementation Feature, sdk Cloud engineer
5  Data management Data, web Data engineer
6  Internal system management Internal, apache System Administrator
7  CLI Development and Framework User, cli Technical Writer
8  API and Backend Services API, controller Back-end engineer
9  Integration system Integration, function System Integrator
10 App Development and Ul Design App, style App Developer

Notes: This table shows the results of task classification using LDA on 34,762,813 code filenames from 2017 to
2023. Keywords are from the LDA model. Task summary and job role are based on keywords.

Table 2: Task Share Statistics

Task Type N Mean St. Dev. Min P75 Max
Frontend development 1054274 0.461 0.291 0 0.711 0.998
Server management 1054274 0.056 0.143 0 0.019 0.994
Android mobile development 1054274 0.056 0.138 0 0.033 0.994
Cloud feature implementation 1054274 0.046 0.126 0 0.010 0.993
Data management 1054274 0.059 0.143 0 0.032 0.997
Internal system management 1054274 0.047 0.128 0 0.008 0.998
CLI Development and Framework 1054274 0.051 0.129 0 0.028 0.993
API and Backend Services 1054274 0.078 0.164 0 0.069 0.998
Integration system 1054274 0.055 0.135 0 0.030 0.993
App Development and Ul Design 1054274 0.091 0.171 0 0.103 0.997

Notes: This table provides summary statistics for the share of labor required by each task type across all team-
months from 2017-01 to 2023-12. Sample includes only teams with valid specialization index (Team size > 1 &
Task types > 1).
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Table 3: Task Assignment Example

Task
1 2 3
Al1/2 1/6 1/3]1
B|1/2 1/6 1/3 |1
Cl1/2 1/6 1/3|1
3/2 1/2 1

Task
1 2 3
Al1/2 1/6 1/3]1
B|1/2 1/6 1/3 |1
Cl1/2 1/6 1/3|1
3/2 1/2 1

Task
1 2 3
Al 1l 0 0|1
B|1/2 1/2 0|1
cl 0 0 1|1
3/2 1/2 1

Actual (4,,) Generalized (G,,) Specialized (S,)

Notes: Each row sum in the matrix represents a member’s task assignment, ,,,(i) and each column sum is the
task share o, (j). Given three members (A, B, C) and three task types (1, 2, 3), Actual (A,,) shows an example
of how each member allocates their labor supply across the tasks. The most generalized (G,,) assignment is
when all members evenly split their labor across all tasks as defined in Definition 1, and the most specialized
assignment aims to assign each member to a single task, with any remaining task share allocated to another
member due to unequal task shares (S,,) as defined in Definition 2.

Table 4: Descriptive Statistics

N Mean St. Dev.  Min Median Pctl(75) Pctl(95)
SPE 439079 0.59 0.24 0.00 0.59 0.75 1.00
Team size 439079 7.39 8.77 4 5 7.0 17
Task type 439079 4.69 2.24 2 4 6 9
Lines of code 439079 43558.76 372784.61 0.00 3325 12926 119168
Activities 439079  750.20 2322.29  0.00 381 784 2379
Monthly Stars 439079 44.55 254.21 0.00 3 18 197
Comments 439079  144.98 362.40 0.00 54 145 533
Solving time 300034 51.18 122.35 0.00 13.86 41.36 224.82
Edited files 439079  570.47 2985.87  0.00 123 363 1917
Code acceptance rate 433833 0.82 0.17 0.00 0.86 0.94 1.00
Create year 439079  2018.14 2.82 2011 2018 2020 2022

Notes: This table provides the summary statistics for the main variables of interest at the team-
month level. Data is from 2017-01 to 2023-12. Only include teams with more than 3 members. Code
acceptance rate, activities, edited files, lines of code, and communication metrics are measured for
team members only.
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Table 5: Specialization and Team Output Quality

(1) (2) (3) (4)
OLS: Dep Var- Log(Monthly Team Stars)
SPE -0.320%**  -0.305%**  -0.078%**  _0.086%**
(0.021) (0.021) (0.007) (0.007)
Dependent mean 2.13 2.13 2.13 2.13
R-squared 0.648 0.650 0.903 0.910
Observations 1,823,750 1,823,750 1,823,750 1,770,310
Poisson: Dep Var- Monthly Team Stars
SPE -0.424%%%  _0.368%**  -0.140%**  -0.143%**
(0.060) (0.058) (0.042) (0.035)
Dependent mean 44.550 44.550 44.550 44.550
Observations 3,192,051 2,968,104 3,076,921 2,996,394
10 Task type share controls v v v v
Team age FE v v v v
Team size FE v v v v
Firm FE v v
Project type FE v
Team FE v v
Member FE v

Notes: This table presents OLS and Poisson pseudo maximum likelihood (PPML) regression results on the
impact of team specialization. The outcome variable for OLS is the log of monthly stars received by each team,
while the outcome variable for Poisson is the monthly star count, which captures the extensive margin. Team
age is calculated as the difference between the calendar year and the year the team was created. Observations are
at the individual level and weighted by 1/team size. Standard errors are clustered at the team level. *p < .10,

¥ p < .05, ¥ p < .01.
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Table 6: Specialization and Team Output Quantity

(1) (2) (3) (4)
OLS: Dep Var- Log(Code Lines)
SPE -1.224%%* -1.260%** -0.954%** -0.934%**
(0.021) (0.022) (0.015) (0.015)
Dependent mean 8.124 8.128 8.124 8.118
R-squared 0.398 0.403 0.597 0.616
Observations 3,212,871 2,982,107 3,212,871 3,124,751
Poisson: Dep Var - Code Lines
SPE -0.369%** -0.406%** -0.576%** -0.554%**
(0.108) (0.119) (0.072) (0.073)
Dependent mean 43558.76 43558.76 43558.76 43558.76
Observations 3,243,291 3,000,021 3,235,747 3,147,523
Task type share control v v v v
Team age FE v v v v
Team size FE v v v v
Firm FE v v
Project type FE v
Team FE v v
Member FE v

Notes: This table presents OLS and Poisson pseudo-maximum likelihood (PPML) regression results on the
impact of team specialization on code quantity. The outcome variable for OLS is the log of lines of code
additions, while the outcome variable for Poisson models is the raw count of lines of code, which captures the
extensive margin. Team age is calculated as the difference between the calendar year and the year the team was
created. Observations are at the individual level and weighted by 1/team size. Standard errors are clustered at

the team level. p < .10, ** p < .05, *** p < .01.
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Table 7: Specialization and Code Acceptance Rate

(1) (2) 3) (4)

SPE -0.010%** 0.020*** 0.015%** 0.015***
(0.002) (0.001) (0.001) (0.001)
Task type share control v v v v
Team size FE v v v v
Firm FE v v
Project type FE v
# code submission v v v
Team FE v v
Member FE v
R-squared 0.217 0.214 0.417 0.442
Dependent mean 0.824 0.825 0.824 0.824
Observations 3,213,677 2,982,846 3,213,677 3,125,570

Notes: This table presents OLS regression results examining the relationship between team specialization and
code submission acceptance rate. The dependent variable is the average code submission rate by team mem-
bers. Team age is calculated as the difference between the calendar year and the year the team was created.
Observations are at the individual level and weighted by 1/team size. Standard errors are clustered at the team
level. p < .10, ** p < .05, *** p < .01.

Table 8: Specialization and Problem-Solving Speed

(1) (2) (3) (4)

SPE 17.655%** 11.247%%* 4.411%* 4.155%*
(1.496) (1.540) (1.385) (1.332)
Task type share control v v v v
Team age FE v v v v
Team size FE v v v v
Firm FE v v
Project type FE v
# question FE v v v
Team FE v v
Member FE v
R-squared 0.166 0.166 0.355 0.398
Dependent Mean 51.182 51.372 51.182 51.579
Observations 2,364,271 2,267,892 2,364,271 2,294,737

Notes: This table presents OLS regression results examining the relationship between team specialization and
issue solving time. The dependent variable is the average time a team takes to resolve an issue raised by
users. Team age is calculated as the difference between the calendar year and the year the team was created.
Observations are at the individual level and weighted by 1/team size. Standard errors are clustered at the team
level. p < .10, ** p < .05, *** p < .01.
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Table 9: Configuration Files Matching Auto-Assignment Detection Pattern

File Pattern

Purpose

codeowners

.github/auto_assign.yml or
.github/auto-assign.yml

.github/dependabot.yml

.github/reviewer_lottery.yml or
.github/reviewer—lottery.yml

.github/assign_reviewers.yml or
.github/assign-reviewers.yml

.github/workflows/assign_reviewers.yml
or
.github/workflows/assign-reviewers.yml

.github/workflows/auto_assign.yml or
.github/workflows/auto-assign.yml

.github/workflows/.mergify.yml

Specifies default reviewers by file path. When a
matching file changes, GitHub automatically
requests review from listed users or teams.

Defines reviewer or assignee rules (e.g., random
selection) for the auto-assign GitHub Action. Used
to automate task allocation.

Configuration for Dependabot, which automates
dependency updates. Not reviewer-specific, but
reflects general automation practices.

Specifies pools and rules for bots that randomly
assign reviewers to pull requests.

Generic reviewer configuration file supporting
round-robin, random, or weighted assignment logic.

Triggers assignment logic via GitHub Actions, often
referencing reviewer config files.

Runs the auto-assign workflow for automated
reviewer selection on pull request events.

Configures the Mergify bot to auto-merge pull
requests after reviewer approval or status checks.

Notes: This table summarizes the set of configuration files captured by the regular expression used to detect
GitHub teams adopting automated task and reviewer assignment. These files reflect a combination of reviewer-

focused settings and general automation workflows.

40



T00 > d 4y 'G00 > d 4y 'T0>d
‘[9AS] SUIYDYRU 9} Y& POI)SN]D oIk SIOLId PIBRPURIS "JUOW-UIRd) ST UOTJRAISSO JO
JUN 9], "USISOP SOOUAIOPIP-UI-9OUDIDPIP POYDJeU € UI S[BLIBA SUIOIINO dY} JO UOISSAIFI 2)eredas © WOIJ SIMSaI $3I10dal UWMN[0D YoRH :S970N

v a v a A A Hof Wt

A a v v v A Hof 9718 W,

A N N N N N sjo1yuoo axeys odAy ysey, 01

7S0°TL G0GF¢ Pr9°LL 7C9°LL 69°9 781°6L N

€9°0 Gco 050 €70 ¢l’0 8¢0 4
(z0°0) (v0°2) (00°0) (€00) (10°0) (000)

***mﬁ.o 9G°¢C ***ﬁ0.0\ ***HN.O ***ﬂo.o ***ﬂo.o\ QQEUE@OO
uotssnosy([  poodg SuIAjoG-wo[qoI  ojey oourjdeooy  Ajuent) nding  Ayrendy ndino 1dS

(9) () () (€) (@) (1)

SS9} UOISSoIToY aulfeseq 0T 9[qR],

41



References

Abadie, A. and J. Spiess (2022). Robust post-matching inference. Journal of the American
Statistical Association 117(538), 983-995.

Autor, D. H., F. Levy, and R. J. Murnane (2003). The skill content of recent technological
change: An empirical exploration. The Quarterly journal of economics 118(4), 1279-1333.

Bassi, V., L. Jung Hyuk, A. Peter, T. Porzio, R. Sen, and E. Tugume (2023). Self-employment
within the firm. Working paper 123, 1-18.

Baumgardner, J. R. (1988). The division of labor, local markets, and worker organization.
Journal of Political Economy 96(3), 509-527.

Beaudry, P., D. A. Green, and B. M. Sand (2014). The declining fortunes of the young since
2000. American Economic Review 104 (5), 381-386.

Becker, G. S. and K. M. Murphy (1992). The division of labor, coordination costs, and knowl-
edge. The Quarterly journal of economics 107(4), 1137-1160.

Blei, D. M., A. Y. Ng, and M. I. Jordan (2003). Latent dirichlet allocation. Journal of machine
Learning research 3(Jan), 993-1022.

Borges, H. and M. T. Valente (2018). What’s in a github star? understanding repository starring
practices in a social coding platform. Journal of Systems and Software 146, 112-129.

Caines, C., F. Hoffmann, and G. Kambourov (2017). Complex-task biased technological change
and the labor market. Review of Economic Dynamics 25, 298-319.

Casalnuovo, C., B. Vasilescu, P. Devanbu, and V. Filkov (2015). Developer onboarding in
github: the role of prior social links and language experience. In Proceedings of the 2015 10th
joint meeting on foundations of software engineering, pp. 817-828.

Deming, D. J. (2017). The growing importance of social skills in the labor market. The
Quarterly Journal of Economics 132(4), 1593-1640.

El-Komboz, L. A. and M. Goldbeck (2024). Career concerns as public good the role of signaling
for open source software development. Technical report, ifo Working Paper.

Eldeeb, Y. and A. Sikora (2023). How much are github stars worth to you? (the guild).
Accessed: 2024-10-11.

Forderer, J. and G. Burtch (2024). Estimating career benefits from online community leadership:
Evidence from stack exchange moderators. Management Science.

Garicano, L. and T. N. Hubbard (2009). Specialization, firms, and markets: The division of
labor within and between law firms. The Journal of Law, Economics, € Organization 25(2),
339-371.

Garicano, L. and E. Rossi-Hansberg (2006). Organization and inequality in a knowledge econ-
omy. The Quarterly journal of economics 121(4), 1383-1435.

42



Gong, J. and I. P. Png (2024). Automation enables specialization: Field evidence. Management
Science 70(3), 1580-1595.

Hayek, F. A. (1945). The use of knowledge in society. The American Economic Review 35(4),
519-530.

Hoffmann, M., F. Nagle, and Y. Zhou (2024). The value of open source software. Harvard
Business School Strategy Unit Working Paper (24-038).

Holmstrom, B. (1982). Moral hazard in teams. The Bell journal of economics, 324-340.

Jager, S., J. Heining, and N. Lazarus (2024). How substitutable are workers? evidence from
worker deaths. Technical report, American Economic Review.

Jones, B. F. (2021). The rise of research teams: Benefits and costs in economics. Journal of
Economic Perspectives 35(2), 191-216.

Kohlhepp, J. (2024). The inner beauty of firms.

Krebs, C. J. (1989). Ecological methodology. (No Title).

Laohaprapanon, S., G. Sood, and B. Naji (2017). ethnicolr algorithm.

Lazear, E. P. (1995). Personnel economics. Massachusetts Institute of Technology.

Lee, D. and C. Makridis (2023). A task-interdependency model of complex collaborative work
for advancing human-centered crowd work. Awailable at SSRN 4472585.

Levinthal, D. A. and J. G. March (1993). The myopia of learning. Strategic management
journal 14(S2), 95-112.

Marschak, J. (1955). Elements for a theory of teams. Management science 1(2), 127-137.

Nagle, F. (2019). Open source software and firm productivity. Management Science 65(3),
1191-1215.

Rosen, S. (1983). Specialization and human capital. Journal of Labor Economics 1(1), 43-49.

Roth, J. (2022). Pretest with caution: Event-study estimates after testing for parallel trends.
American Economic Review: Insights 4(3), 305-322.

Sharoni, B. (2024). The effect of inventor mobility on network productivity. Technical report,
Working Paper. Harvard University.

Smith, A. (1776). The wealth of nations [1776], Volume 11937. na.

Vasilescu, B., Y. Yu, H. Wang, P. Devanbu, and V. Filkov (2015). Quality and productivity
outcomes relating to continuous integration in github. In Proceedings of the 2015 10th joint
meeting on foundations of software engineering, pp. 805-816.

Wagner, S. and M. Ruhe (2018). A systematic review of productivity factors in software
development. arXiv preprint arXiv:1801.06475.

43



Online Appendix of:

How does the Division of Labor Affect Team
Productivity? Evidence from GitHub

Jinci Liu

August 26, 2025

A Working on Model

In this theoretical section, I provide a simple framework that sets the stage for under-
standing the potential directions of effect and the mechanisms driving it. It is used to form
predictions and to guide the empirical tests. The model incorporates two key drives of specializa-
tion on team productivity: task-specific human capital accumulation and cross-task knowledge
spillover. While both parts are integral components of the team production function, the chan-
nels through which they affect team’s productivity are distinct. Therefore, the model allows

me to explore scenarios where the benefits of specialization outweigh the cost.

A.1 Setting

Each team produces a single product (e.g., a website) that requires a fixed set of tasks to
be completed by its members. Members have no preference over tasks, and their wages are
determined by the firm rather than by the team. Teams cannot choose which members to hire
or which tasks they must undertake; however, they do decide how to allocate members across
these tasks. That is, both the set of members and the set of tasks are exogenous, while the
assignment of members to tasks is endogenous. Following Becker and Murphy (1992), assume

all members are homogeneous, supply labor inelastically, and receive a constant wage w. Let

J denote the set of all possible tasks. Each team m € {1,..., M} consists of N,, € N members
and require to complete a subset of tasks J,, C J. The task allocation within team m is

represented by
NTTL JTTL
A e RImm,

where A(i,7) is the amount of labor member ¢ allocates to task j as discussed in Section3.1.

For notational simplicity, the subscript m is suppressed when no confusion arises.



Each member 4’s output on task j is given by

gi,9) = | z20i,)% 4+ Al A(i, §)
—— ——

Knowledge Spillover = Task-specific HC

where o > 1 is the elasticity of substitution between knowledge spillovers and task-specific
human capital.
We define

Z(Z7j> = Oé(j) - A(Z,j),

where aj) = Y. A (4, j) to capture the idea that the more labor other members devote to task

J, the greater the feedback and assistance (knowledge spillover) available to member i.
The task-level output is the sum of all members yields the total output for task j:

N

(i) =Y ali,j).

=1

and the team’s final output is given by a production function

which is strictly concave and increasing in each y(7).
Teams also incur a coordination cost, ¢,,(A), that depends on how labor is allocated across
tasks. I assume there is no coordination cost when the team adopts the most specialized task

allocation S, and the coordination cost grows as the distance between S and A increases, which

essentially corresponds to the specialization index SPE= Z((g’g)).
The team maximization problem is
max Y —wN — ¢, (A) (3)

NxK
AeRY

s.t. >, A(i,j) = a; Vjand Y, A(i,j) =1

A.2 Simple Example

Assume o=—o0 and ¢ = 0 and there are only two members and two tasks with equally task

share «;.



A1, 1) = A(2,1)" =1/2

B Task Classification Process

[Figure B1 about here.]



Figure B1: Word Clouds for LDA 10 Task Types

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
StO r na e e ~ \ operator, ; ® request exterl? ]_On interface a sarver QUETY b zine
s rand LoerVer -Funtime gii-Sdk  2PPwel
APP android s (e nt + auth Jmefricton gt
ahprondrere &L 1ENT KOEL LI fegture O g ‘ta
acgount U 1=s<rapp table- -«provider s & &
Topic 6 Topic 7 Topic 8 Topic 9 Topic 10
sghema -~ app l 1 controller &z: ait~contract o release“i,posterror
“"’“‘ w RASIS 5 networkappconta ro4 ol
tpgﬂr n ra]é frameworkC l E ] Eblcck 2 E %L‘l;tlggprga 't 118?] g 5
pplnlt public¥ demorm e spec 2lserTice T@SOUrCe e

Notes: This figure presents word clouds visualizing the 10 task types identified through Latent Dirichlet Alloca-
tion (LDA) topic modeling. Each panel shows frequently occurring terms within different development domains:
data management (Topic 5), server-side development (Topic 2), runtime environments (Topic 3), client applica-
tions (Topic 7), API development (Topic 8), and web applications (Topic 10). The size of each word represents
its frequency within the topic, with terms like “data,” “api,” “user,” and “app” being particularly prominent.
This classification helps measure team specialization by categorizing tasks into distinct technical domains. Top-
ics reflect common software development tasks and technological components.

C Project Type
[Figure C1 about here.]

[Figure C2 about here.]



Figure C1: Word Clouds for LDA 6 Project Types
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Notes: This figure presents the six project types identified through Latent Dirichlet Allocation (LDA) topic
modeling. Each panel represents a distinct project category: App Development (Topic 1, dominated by
“app”), Container (Topic 2, centered on “base”), Data Tools (Topic 3, highlighted by “tool”), Education
(Topic 4, featuring “classroom”), Library&Framework (Topic 5, showing “lib”), and Web Development
(Topic 6, emphasized by “web”). The word clouds display terms scaled by their frequency within each project
type, helping classify repositories into broad development domains. Project type classification helps control
for heterogeneity across different software development contexts when analyzing the relationship between spe-
cialization and productivity. LDA analysis performed on repository metadata, README files, and project

descriptions.



Figure C2: Team Specialization and Productivity by Project Type
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Notes: This figure presents the team specialization and productivity metrics by project types, accounting for
task distribution and team age. The analysis also includes team size, member fixed effects, and team fixed
effects. These fixed effects help control for differences in worker composition, team size, and the impact of team
project types on team productivity. Observations are at the individual level and are weighted by 1/team size.

D Additional Results

Table D1 presents summary statistics for treatment and control teams at the time of auto-
assignment adoption. The two groups are well-balanced across key team and performance
characteristics, consistent with the matching design. Treatment teams have an average team
size of 6.16, compared to 6.40 for control teams. They perform a similar number of task types
(5.09 vs. 5.06) and have comparable specialization indices (0.53 vs. 0.54). Code acceptance
rates are nearly identical across groups at 0.83 and 0.82, respectively. Differences in lines
of code (43,218 vs. 41,264) and problem-solving time (51.92 vs. 53.01 days) are small and



statistically insignificant. Although treatment teams receive fewer monthly stars on average
(36.01 vs. 59.98), this variable is not a matching criterion and may reflect idiosyncratic project
visibility. Overall, the balance across core attributes—team composition, specialization, and
productivity—reinforces the credibility of the matched sample and supports the identification

strategy.

[Table D1 about here.|

[Figure C1 about here.]



Figure D1: Distribution of Team Specialization Index

(a) By Project Type (b) By Number of Task Type
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Notes: This figure illustrates the distribution of the team specialization index across various dimensions. Figures
Dla and D1b display the distribution by project type and number of tasks for all team-month observations,
excluding teams with fewer than four workers. Additional details on project types and task types are provided
in Sections 2.4 and 2.3. Figures Dlc and D1d also present the distribution for small teams consisting of 2 or
3 workers. These smaller teams are excluded from the main analysis because their limited size restricts their
ability to vary their degree of specialization, resulting in most being either highly specialized or generalized.



Table D1: Balance Table for Even Task Assignment Adoption

Team size 6.16 32052 6.40 57584 -0.25
(0.04)
Task types 5.09 32052 5.06 57584 0.03
(0.02)
Lines of code 4321796 32212 41264.16 61160  1953.79
(2705.34)
Monthly stars 36.01 32212 59.98 61160 -23.97
(1.29)
Specialization index 0.53 32052 0.54 57584 -0.01
(0.00)
Code acceptance 0.83 31745 0.82 56693 0.01
(0.00)
Problem-solving time 51.92 21512 53.01 45397 -1.09
(0.94)
Create year 2017.12 32212 2018.13 61160 -1.01
(0.02)

Notes: The table presents summary statistics for both the control and treatment groups at event month k£ = 0,
each consisting of 3,864 teams. The treatment group includes teams that adopted even task assignments in
event month ¢. Notably, I only matched on decile of average team size, task type, and lines of code but did not
specifically match the characteristics of teams.

E Examples
[Figure E1 about here.|
[Figure E2 about here.|
[Figure E3 about here.]
[Figure E4 about here.|
[Figure E5 about here.|

[Figure E6 about here.]



Figure E1: Star Example

microsoft/vscode
R ralres

@ Issues 5k+ 11 Pull requests 510 ® Actions [ Projects 01 wiki @ Security 14 |~ Insights

£% vscode rusic @ ween 58 -] [ ¢ ro 28k | -

¥ main ~ ¥ 1,059 Branches © 294 Tags Q Goto file t  Addfile - About
Visual Studio Code

@ Tyriar Merge pull request #227314 from microsoft/tyriar/174521 @ X 216227d - 1hourago {0 124,361 Commits
@ code.visualstudio.com St
.configurations Engineering - update winget configuration file (#214228) 3 months ago ar
electron  microsoft editor
.devcontainer Setup rust in Devcontainer (#221301) 2 months ago typescript visual-studio-code 1 62 K
.eslintplugin ESM merge to main (#227184) 3 days ago 0 Readme

Notes: This figure illustrates how project popularity is measured using GitHub’s star system, using Microsoft’s
Visual Studio Code repository as an example. Stars represent a form of peer evaluation where users can
bookmark and show appreciation for repositories they find valuable. In this example, Visual Studio Code has
received 162,000 stars, indicating its high popularity within the developer community. This metric serves as
one of our key measures of team productivity, as it captures the project’s impact and perceived value among
potential users and other developers. While not a perfect measure of quality, stars provide a standardized way
to compare project impact across different domains and team sizes.



Figure E2: Reviewer and Assignee

feat: scaffold chat editing related files provider api #233457 <> Cote =
joyceerhl merged 1 commitinte main from joyce/leading-mandrill (G2 days age

© conwersation 0 < Commits 1 [El Checks 7 [® Files changed 10 +114 -4 wmum
@ joyceerhl commented 2 days ago Contributor ~ *+=

—_— Reviewer

No description proviaed

O i
——  Assignee
o @) reat: scaffold chat editing related files provider api  doacafa
Labels.
A @)ioyceerhl self-assigned this 2 days ago None yat
Proiects
11 @ioyceerhi enabled auto-merge (squash] 2 days ago None yet
Milestone

% 3 vs-code-engineering bot added this 1o the November 2024 milestone 2 days ago

Reviewer made the

@ bhavyaus approved these changes 2 days ago > decisi
ision to approve
Juest mey close
) loyceerhl merged commit 8fddtes into main 2 days ago these ¢ hanges
B checks passed None yet
P ioyceerhl deleted the joyceleading-mandrill branch 2 days ago Natfieatians Fustomize
£\ subscribe

Notes: The example shows a typical Pull Request (#233451) with its associated review thread. Two distinct
roles are highlighted: Reviewers (red box) who evaluate code changes and Assignees (blue box) who are respon-
sible for implementing the changes. The bottom of the image demonstrates a completed review process where
a reviewer has approved the proposed changes.
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TypeError: Failed to execute 'compile’ on "WebAssembly' #226649

Figure E3: Discussion Example

alexr00 wants to merge 1 commit into main from alexr@®/issue226599 (G

©) Conversation 3

alexr00 cpmmented last week

i

Fixes #226599

Q

e @ alexr00 commented last week

- Commits 1

[El Checks & @ Files changed 2

Member <

View reviewsd changes

sro/vs/editor/browser/services/treeSitter/treeSitterParserservice. ts

e -349,7 +350,8 @@ export class TreeSitterTextHodelService extends Disposable implenents ITre

49 358 const environmentService = this._enviranmentService;

30 359 await Parser.initi{

L 360 locateFile(_file: string, _folder: string) {

3852 = raturn FileAccass.asBrowseriiri(" s{gatModuleLocation{envi ronmer
EL const wassLocation = getwssaLocation|environsentService, FILEN
ETTN return FileAccess.asBrowseriiri (wasnlacation) ., toString(true);

Alear00 lost week Member _Awhor -

@bpasero, I'm not sure how to make this work on web, On desktop it works as expected (makes a UR that looks
like =path to node moduless/@vscode/tree—sitter—wasm/wasn/tree—sitter,wasm ), but on web, asBrowserliri
addls seme extra duplicate path segments and | end up with <path to node -
wasm/wasn/tree-sitter. js/wasa/tree-sitter.vasn . Do you have any idea whers these extra path segments
could be coming from?

2]

P

bpasero last week Momber -

@ijrieken might be able o help

5]

L ]

Jrieken last week - edited « Member <+

Can you take inspiration from vsda They have very exp! for web and asm. | believe esp.

for web a different base-url needs 10 be assumed, wnal.. vs

oniguruma/

o

Notes:

Reply.

communication (number of comments).

11

Ask question/submit code

Conversation 1

Conversation 2

Conversation 3

This figure demonstrates how technical discussions unfold in GitHub’s issue tracking system. The ex-
ample shows a TypeError issue (#226649) and the subsequent problem-solving conversation. The interaction
is structured in three parts: (1) initial question/code submission, (2) technical discussions and proposed solu-
tions, and (3) follow-up clarifications. This conversation structure allows us to measure the quantity of team



Figure E4: Pull Request Merge Example

(a) Manage to merge code

Fix tool call params order #226502

P3NVl roblourens merged 1 commitinto main from roblou/pleased-tuna (D) last week

@) Conversation 0 - Commits 1 El Checks s Files changed 3

mmented\astweek Member = ** Submit code change

And convert tool_use part correctly

©

< @ Fix tool call params order - v £f1778d
AR | roblourens self-assigned this last week

1 g roblourens enabled auto-merge (squash) last week

=] )Q vs-code-engineering bot added this to the August 2024 milestone last week

Rix ° rebornix approved these changes last week View reviewed changes

e g roblourergs merged commit 6a6cel

6 checks passel

o (885 last week weeas  Manage to merge

P g roblourens deleted the roblou/pleased-tuna branch last week

(b) Fail to merge code

Update main.ts to Refactor Startup and Service Initialization #2265

J$YEEEE) imsharukh1994 wants to merge 1 commit into microsoft:main from imsharukh1994:imsharukh1994-patch-2 (0

@) Conversation 0 -o- Commits 1 B Checks 2 Files changed 1

imsharukh1994jcommented last week -
= Submit code change

Refactored the main.ts file to improve clarity and maintainability. Key changes include:

« Improved error handling and logging throughout the startup process.
« Organized service initialization into a dedicated method for better readability.
+ Added more detailed comments and TypeScript typings for enhanced code understanding.

. more robust i patching and IPC server handling.

These updates aim to simplify future maintenance and make the code more resilient to errors.

(©)
o @ update main.ts to Refactor Startup and Service Initialization Fail to merge
& ’imsharukmssA force-pushed the imsharukh1994-patch-2 branch from 274246b to 9d72a5a last week Compare

© ) vs-code-engineering bot added the | triage-needed label last week

R 4 de-engineering bot assigned last week

m @ bpasero closed this last week

Notes: This figure illustrates two outcomes in the code review process: successful and failed merges. Panel
(a) shows a successful merge (#226502) where submitted code changes are approved and integrated into the
main codebase. Panel (b) demonstrates a failed merge (#2265) where proposed changes are rejected. Code
acceptance rates serve as one of our key productivity metrics.
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Figure E5: Problem Solving Example

CSS: toggle line comment is not preserving #15

[OJSLEELRY bpasero opened this issue on Nov 15, 2015 - 1 comment

|! bpasero commented on Nov 15, 2015 Member  *+*
—> Open time

Have a CSS block like this:

.monaco-workbench > .part > .status {
display: none; /+ Parts have to opt in to show title area */ \

Y
Put the cursor to the body of the declaration and toggle line comment twice, you end up with this:

.monaco-workbench > .part > .status {
/*display: none; Parts have to opt in to show title area %/
}

A @ bpasero assigned aeschli on Nov 15, 2015 . .
Solving time

© @ chrisdias added the ) label on Nov 16, 2015

R (B aeschli assigned alexdima and unassigned aeschli on Nov 18, 2015

‘, alexdima commented on Nov 18, 2015

The toggle line comment does the following for languages which don't support line comments:

« if there is any block comment on the line, it gets removed
« if there is no block comment on the line, the line gets surrounded in a block comment. J

® |‘, alexdima closed this as completed on Nov 18, 2015 | > Close time

Notes: This figure demonstrates how we measure problem-solving efficiency in teams. Using issue #15 as an
example, we track three key timestamps: (1) Open time - when the issue is first reported, (2) Solving time -
duration of technical discussion and solution development, and (3) Close time - when the issue is resolved. The
time between open and close serves as our measure of problem-solving speed.
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Figure E6: Auto Assignment File Example

= [ e e ] Te@m +-loln e @

<> Code () Issues 48 [] Pullirequests 11 O Discussions () Actions [ Projects 1 [0 wikk @ Security |~ Insights

.
[ Files I einsteinpy | github | auto_assign.yml (0 I Flle
B main - x| @B JeS24 and shreyasbapat Update githublauto_assignyml &8 mc»Hum
Q Gotofie 1
Code | Blame 7 Llines (21 lech - 718 Byles fan 0 & 2 - B
> W circloci
T — # Sat o trie to 303 revievers 1o pull requests
7 adoReviewers: true = -
+ o ssue TeveLTs ; ime the file was adde
4 # Set to true to add assignees to pull requests
> i workflows
5 addhssignees: false
[ FUNDING ymi &
@ A List of reviewers to be added to pull requests (Github user name)
| O suto_assignymi P
O codecouymi 9 - shreyasbapat
1w Jesz4
[ no-response.ymi 1
o _ 12 £ & rusber of reviesers added to the pull request
pull_request_template.md 13 % Set 8 1o aad all the reviewers (default: @)
O wigyml 14 PusberOfReviewers: 1
15
> M bin 16 t of assignees, overrides reviewers if set
> B docs Y reesi
1B # - assignest
+ M sre 19
20 # A rusbar of assigeees to add 1o the pull request
>
i tests E: # Set to @ to add all of the assignees.
[ .codectmate.ymi 2 # Uses nusberOffievicwers if unset.
23 # runber0fAssignees: 2
[ -gitignare 24
[} pepaspeskaymi 25 @A lList of keywords to be skipped the process that add reviewers if pull requests include it
6 SRipKeywords:
[ AUTHORS il - wIP

[} CHANGELOG

Notes: This figure shows the implementation of GitHub’s random assignment feature through a configuration
file. The left panel shows the team’s repository structure, while the right panel displays the auto-assignment
configuration. The timestamp of file addition marks when teams transition to more generalist task allocation,
providing our second source of identification.
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