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Abstract

Does the division of labor increase team productivity? This paper provides new evi-
dence challenging the conventional view that specialization increases productivity. I create
a panel dataset from GitHub, covering 35 million task allocations across 64,400 software
development teams from 2017 to 2023. My result shows a negative relationship between
team specialization and various productivity metrics, including output quality, quantity,
and user issue resolution time. To identify causal effects, I exploit GitHub’s introduc-
tion of an automatic task assignment feature, which evenly distributes tasks across team
members. Using a matched difference-in-differences design, I find that adoption of this
feature reduces specialization and leads to significant gains in productivity: output quality
rises by 4%, output quantity by 21%. Team communication also increases by 13%, sug-
gesting that improved interaction and knowledge exchange are a key mechanism behind
these productivity gains. These findings highlight a trade-off in non-routine production:
while specialization increases task-specific human capital, it impedes cross-task knowledge
spillovers that are essential for innovation.

JEL Classification: C55, D23, L23, L86, J24, M54
Keywords: division of labor, human capital, team, productivity

∗IIES, Stockholm University. Email: jinci.liu@iies.su.se.
I thank David Card, Sahiba Chopra, Mitch Downey, Jie Gong, Patrick Kline, Yu Ching Lam, Danielle Li,
Zhongyi Liu, Christos Makridis, Arash Nekoei, Jonatan Riberth, David Schönholzer, Jósef Sigurdsson, Carolyn
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1 Introduction

Significant differences in productivity and organizational structure exist both across and

within firms. A central question in economics is how to optimally allocate tasks among workers.

The seminal answer from Smith (1776), illustrated through the pin factory example, suggests

that the division of labor increases productivity. Later theoretical work builds on this idea,

showing that specialization helps human capital accumulation and raises productivity. 1

While prior studies often assume that specialization improves productivity (Deming, 2017;

Bassi et al., 2023), direct empirical evidence remains limited. This paper studies task allocation

specialization within software development teams and finds that specialization is detrimental

to team productivity, reducing both code output quantity and quality.

The effect of specialization on team productivity is ambiguous in non-routine produc-

tion. Unlike routine production, which follows explicit rules, non-routine production requires

problem-solving and complex communication (Autor et al., 2003). This distinction creates a

trade-off: focusing on a narrow set of tasks helps workers accumulate task-specific skills and

increase productivity, but it concurrently restricts knowledge sharing and discussion across

tasks, which are essential in non-routine production (Levinthal and March, 1993). As Hayek

(1945) argued, organizations exist primarily to coordinate and combine diverse information—a

function that becomes indispensable in complex, uncertain environments.

This paper uses novel data from GitHub—the world’s largest online coding platform.

GitHub, valued at over 8 trillion USD (Hoffmann et al., 2024), plays a central role in the

software industry. I construct a panel of 35 million code files, 292,840 developers, and 64,400

teams over seven years. This granular data captures individual activity, specifying who engages

in particular files and at which point in time. It enables the construction of novel measures for

team specialization and productivity at a team-month level.

Building on this dataset, I measure team task specialization by comparing how tasks are

distributed across team members. Using a topic classification model, I assign millions of files

to 10 task types (e.g., frontend, backend) and compute the task distribution within each team.

I then benchmark observed allocations against two extremes: “most specialized” and “most

generalized” structures, controlling for team size and task type distribution. A higher special-

ization index indicates that a team is further from the “most generalized” counterfactual. I

link this index to multiple productivity outcomes: output quality (user appreciation), output

quantity (lines of code), problem-solving speed (issue resolution time), and code acceptance

rates. These metrics capture distinct aspects of productivity and are broadly applicable across

team-based work.

I find a negative relationship between team specialization and productivity. One standard

1For example: Rosen (1983); Baumgardner (1988); Becker and Murphy (1992)
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deviation increase in the specialization index corresponds to a 2.2% decline in team output

quality and a 24.3% decline in team output quantity. These results hold after controlling for

team size, task type, team age, and team and member fixed effects. Specialized teams show a

0.47% higher acceptance rate for submitted code, suggesting stronger task-specific skills, but

also take 1.08 days longer to resolve user issues. The longer resolution time indicates that

members in specialized teams are less familiar with tasks beyond their assigned roles, reducing

the team’s functional flexibility and slowing its response to problems.

OLS estimates show that specialized teams are associated with less productivity. However,

task allocation is often endogenous, as managers may assign tasks based on past performance.

To address this concern, I exploit GitHub’s automatic task assignment feature, which ran-

domly distributes tasks across team members. Adoption of this feature reduces within-team

specialization by enforcing a more balanced allocation.

I apply a one-to-one matched differences-in-differences design, comparing teams that adopt

automatic task assignment (treatment) to observationally similar teams that do not (control),

ensuring both groups share similar characteristics. This matching approach helps to mitigate

selection bias and pre-existing differences in specialization.

Adoption of the feature decreases specialization and increases output quality but 4% and

output quantity by 21%. It also declines in the code acceptance rate (from a baseline of

0.83)and increases team communication by 13%. These results are consistent with the OLS

findings, reinforcing the conclusion that specialization harms team productivity.

This paper makes three contributions to the understanding of how organizational structure

affects productivity. First, it provides new evidence on the productivity effects of specializa-

tion in non-routine production. Prior studies focus on routine settings, such as cashiering or

salon services, where tasks are repetitive and codified, and specialization tends to improve per-

formance (Gong and Png, 2024; Kohlhepp, 2024). In contrast, software development requires

problem-solving and coordination, and I find that specialization reduces productivity by limit-

ing cross-task learning and communication. This finding also revisits classical theories of the

division of labor (Rosen, 1983; Baumgardner, 1988; Becker and Murphy, 1992), which emphasize

productivity gains from specialization. Empirical tests of these theories have been constrained

by data and identification challenges. I address this by leveraging GitHub’s automatic task

assignment feature—which randomly distributes tasks across team members—and applying a

matched difference-in-differences design to estimate the causal effect of specialization on team

performance.

Second, the paper identifies the knowledge spillover lost with particular relevance for non-

routine work. Both routine and non-routine production incur coordination costs (Becker and
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Murphy, 1992; Lazear, 1995),2 but learning costs matter more in contexts like R&D, where

project trajectories are uncertain and task interdependence is high. Excessive specialization

can limit idea exchange and adaptive feedback. While Garicano and Rossi-Hansberg (2006);

Garicano and Hubbard (2009) argue that firms should adopt hierarchical knowledge structures

with specialized agents, such frameworks may not suit innovation-driven work. In software

development, specialists cannot operate in isolation and require continuous interaction across

domains. This helps explain why higher specialization slows problem-solving, consistent with

Levinthal and March (1993)’s argument that specialization can lead to organizational myopia.

Third, the paper contributes to recent literature on task complexity and coordination in the

labor market. While returns to technical skills in cognitive occupations have declined (Beaudry

et al., 2014), demand for coordination and adaptability has risen, especially in complex, fast-

evolving environments (Lee and Makridis, 2023). Complexity improves outcomes only when

paired with autonomy and effective coordination (Caines et al., 2017). My findings provide

micro-level evidence on how task structure affects performance in such settings, underscoring

the importance of cross-task learning and communication.

The remainder of this paper is structured as follows. Section 2 describes the data and

sample construction. Section 3 details the measurements. Section 4 presents the stylized facts.

Section 5 reports the empirical strategy, and Section 6 concludes.

2 Data

This section describes the data sources used to construct the final panel. The first source is

the GH Archive, which provides event-level timelines of developer activity. The second source

is developer profile pages on GitHub, which include names, profile pictures, locations, email

addresses, and brief biographies. The panel covers all public activities from 2017 to 2023.

2.1 GitHub: World’s Largest Online Coding Platform

GitHub is the world’s largest online coding platform, where developers store code, share

projects, and collaborate. As of June 2025, it hosts over 259 million public repositories and

more than 161 million users.3 Its estimated global value exceeds 8 trillion USD (Hoffmann et al.,

2024). GitHub plays a central role in the open source ecosystem, providing the infrastructure

through which individuals and organizations contribute, reuse, and improve code. Technology

2Becker and Murphy (1992) identifies three types of coordination costs: (1) principal-agent conflicts as
members specialize and face weaker output incentives; (2) hold-up problems across interdependent tasks; and
(3) miscommunication or poor coordination as the number of specialists increases.

3See https://github.com/search?q=type:user, https://github.com/search?q=is:public, accessed 2024-06-29.
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giants such as Google and Microsoft maintain thousands of public repositories and increasingly

rely on open source software to drive innovation and productivity (Nagle, 2019).4

Beyond code storage, GitHub facilitates large-scale, distributed collaboration. It records

the full version history of each file, allowing developers to coordinate asynchronously across

time zones and teams. These platform-level features are further enhanced by GH Archive, a

third-party project that captures all public GitHub activity in near real time. GH Archive

preserves event-level traces even when repositories are modified or deleted, making it possible

to study open source development with precision over time.

2.1.1 Team: Repository under Organization

A GitHub repository is a project workspace where developers store code, files, and version

history. 5 In this paper, I define each repository as a team—a group of developers jointly

contributing code toward a shared project, much like researchers co-authoring a paper. This

definition follows Jones (2021), who studies “team science” through patterns of scientific collab-

oration and co-authorship. 6As Figure 1a shows, some teams operate under organizations, such

as Microsoft or DeepSeek, while others are managed by individual users. This study focuses

on teams under organizations for three main reasons. First, organizational teams are more

likely to involve structured collaboration, with coordinated workflows across multiple develop-

ers. Second, they are typically aligned with firm-level goals such as product development or

commercialization. Third, organizations often use these teams to signal technical capability

and attract talent. Together, these features make organizational teams more representative of

real workplace environments. In contrast, individual teams often reflect personal interests or

side projects.

[Figure 1 about here.]

2.1.2 Team Members: Defined by GitHub Access Permissions

GitHub user accounts can be either human users (“developers”) or machine users (“bot”).

This paper focuses only on human users. 7 To join GitHub, each developer must create a unique

4As of June 2025, Microsoft maintains 6.9k public repositories, Google 2.8k, Apple 323, Meta 149, and
Amazon 162.

5See https://docs.github.com/en/repositories
6The concept of a “team” has been defined in various ways in the economics literature. Marschak (1955)

defines a team as “an organization the members of which have only common interests,” highlighting the align-
ment of incentives. Holmstrom (1982) defines a team “rather loosely as a group of individuals who are organized
so that their productive inputs are related,” emphasizing joint production. In more recent work, such as Jones
(2021), teams are observed through patterns of co-authorship in science. Following this tradition, I define each
GitHub repository as a team—a group of developers jointly contributing code toward a shared project, much
like a group of researchers co-authoring a paper.

7Throughout the paper, “developers” refers to human users.
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login ID and can publicly display personal information—such as name, profile image, location,

firm, bio, and email—on the profile page. Many use this space to highlight programming skills

and increase visibility to potential employers. Career-related motivations often drive developers

to provide accurate personal details and include links to LinkedIn profiles or personal websites

to signal credibility and professional identity (El-Komboz and Goldbeck, 2024).

GitHub teams often include both internal members and external volunteers. While anyone

can contribute or comment on a team’s work, only internal members hold formal roles with

project-level permissions. It is important to distinguish members with internal access from

external volunteers. To identify internal team members, I rely on the author association field

defined by GitHub. This field classifies users as collaborator, contributor, mannequin, member,

none, or owner,8 and has been available since 2017. It reflects a developer’s access level and

formal relationship to the team.

I define team members as users labeled owner, member, or collaborator, as these roles imply

access to the team’s codebase and active involvement in development.9 These users typically

hold write-level or higher permissions, enabling them to push code, review pull requests, manage

issues, and coordinate work. Owner and member are formally affiliated with organizations,

while collaborator are invited contributors with similar technical access. In contrast, users

labeled contributor or none represent occasional or external engagement, without sustained

involvement or permissions. As shown in Figure 1b, each team may include both team members

and external volunteers. This paper focuses exclusively on team members. 10

2.2 Data Construction

To construct my dataset, I combine the GH Archive with developer profile information

from the GitHub API. The GH Archive offers time-stamped records of events from all public

projects, providing a comprehensive timeline of GitHub activity since February 2011. It includes

all public information on code-related actions, such as pull request events, and tracks changes

for each file. For each event, it records the user who contributed, the number of lines of code

added, the time it took to open and close a pull request, and project-level metrics such as the

number of stars received.

To gather demographic information, I use the GitHub API to access each developer’s profile

page, which includes their profile image, location, name, email address, and biography. Career

8See GitHub Docs: author association, accessed 2024-04-26.
9This measure is preferable to GitHub’s MemberEvent, which captures only a subset of membership changes

and may include users who never actively contributed.
10Because author association is recorded only when a team member performs an observable action, the data

are missing for inactive months. I address this by imputing continuous membership between the first and last
month in which a user is observed as a team member. In practice, it is rare for a member to leave and rejoin a
team within the observation window.
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factors significantly motivate developers to contribute to online platforms such as GitHub and

Stack Exchange (El-Komboz and Goldbeck, 2024; Forderer and Burtch, 2024). This suggests

that developers have an incentive to disclose accurate personal information that may improve

their career prospects. I focus on developers who are affiliated with repositories and have per-

mission to access team files, defining these individuals as team members. For these developers,

GitHub functions more as a workspace than a hobby space, providing a greater incentive to

disclose accurate personal information that may benefit their careers.

2.3 Mapping Code Files to Tasks

I link each code file to all team members who interacted with it—whether by writing, review-

ing, or commenting. Rather than focusing solely on the original author, I treat collaboration as

the unit of analysis, reflecting the importance of feedback and code review in modern software

development. These interactions help reduce bugs and integration conflicts when merging code

into the main project.

The dataset includes 34,762,813 code filenames from 2017 to 2023. To group these files

into interpretable task types, I apply Latent Dirichlet Allocation (LDA), a widely used topic

modeling method (Blei et al., 2003). Figure 2a shows an example of the raw filenames used as

input to the model.

[Figure 2 about here.]

Selecting the number of task types involves a trade-off: too many create sparsity and mea-

surement error; too few obscure meaningful variation in task composition. I select 10 task

types to balance interpretability and precision, based on the assumption that files within the

same type require similar skills and involve lower coordination costs.11 Appendix B provides

additional details and robustness checks. The results are robust to alternative classifications

using 8 and 12 task types.

Table 1 lists the 10 task types along with representative keywords. These include Front-end,

Back-end, server management, Android mobile development, cloud infrastructure, UI design,

and other common software tasks. Figure 2b illustrates an example of task assignments at the

team member level, while Table 2 reports summary statistics for the share of labor allocated

to each task type across all team-months.

[Table 1 about here.]

[Table 2 about here.]

11In the remainder of the paper, “task” refers to the 10 task types classified using LDA.
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2.4 Project Type

Given that each team may work on different projects, I collect information from each team’s

descriptions, README files and labels. For example, the Visual Studio Code team has the

description “Visual Studio Code” and labels including “electron,” “microsoft,” “editor,” “type-

script,” and “visual-studio-code”. Using LDA, I categorized the team into 6 distinct project

types: App Development, Container, Data Tools, Education, Library&Framework and Web

Development. The appendix section C provides additional details about the process and word

cloud.

2.5 Gender Prediction

To predict the gender of developers based on their avatars, I select a state-of-the-art model

that closely matches the resolution and cropping methods of the training images. This chosen

model12 trains vision transformers on male and female portraits and develops a corresponding

image classifier. The model predicts the probability that an image represents a female or a male.

To find the optimal cutoff for gender classification, I use a sample labeled by some annotators

and find that the highest accuracy is achieved with a cutoff of 0.85. If the predicted probability

is above 0.85, the image will be classified as male or female; otherwise, it will be labeled as

“others”.

2.6 Race Prediction

I predict developers race and ethnicity based on their name and I choose Ethnicolr, as

developed by Laohaprapanon et al. (2017). Ethnicolr uses both first and last names to classify

individuals into four combined race and ethnicity categories: Hispanic (of any race), and non-

Hispanic Asian, Black, and White. The algorithm is trained on data from the US Census,

Florida voter registration, and Wikipedia. Each name is assigned probabilities for belonging

to each of the four categories, with the category of highest probability being designated as the

predicted race or ethnicity.

3 Measuring Task Assignment and Team Productivity

This section describes the measurement of task specialization and team productivity. I

construct a specialization metric that captures how a team’s task allocation deviates from two

theoretical benchmarks based on team size and task distribution. Specifically, I compare each

12https://huggingface.co/rizvandwiki/gender-classification, accessed 2024-04-23
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team’s actual task assignment to a generalized benchmark, where tasks are evenly distributed

across members, and a specialized benchmark, where each member focuses on a single task13.

This relative metric allows comparison of specialization across teams with different sizes and

project types.

To measure productivity, I construct four metrics that capture different dimensions of soft-

ware team performance. These metrics address both the quantity and quality of team outputs,

making it easier to distinguish between the effects of specialization on task-specific human cap-

ital and general problem-solving capability. Although designed for software development, these

measures can be adapted to other settings.

3.1 Team Specialization Measure

Denote J the set of all task types. Each teamm = 1, . . . ,M consists ofNm ∈ N homogeneous

team members and handles a set of task Jm ⊆ J. Denote Am ∈ RN×|Jm|
+ is the task assignment

for team m, where Am (i, j) represents worker i’s labor input on task j.

Am =


Am (1, 1) Am (1, 2) · · · Am (1, |Jm|)
Am (2, 1) Am (2, 2) · · · Am (2, |Jm|)

...
...

. . .
...

Am (Nm, 1) Am (Nm, 2) · · · Am (Nm, |Jm|)


Denote lm(i) :=

∑
j Am (i, j) to be worker i’s labor share and αm(j) :=

∑
i Am (i, j) to be the

task demand of task j. Assume each member has one unit of inelastic labor supply.

Definition 1 Define Gm to be the most generalized task allocation matrix of team m, where

the task assignment of member i to task j is Gm (i, j) = αm(j)
Nm

.

Definition 2 Define Sm to be the most specialized task allocation matrix of team m.

Definition 3 Define SPEm to be the team specialization index where SPEm=
d(Am,Gm)
d(Sm,Gm)

Consider three task assignments in Table 3. There are three members (A, B, C) and three

task types (1, 2, 3), with task demand αm =
[
3/2 1/2 1

]
. Suppose the actual assignment(Am)

shows how each member allocates their labor supply across tasks. The most generalized (least

specialized) assignment is when all members evenly split their labor across all tasks (Gm) as

defined in the Definition 1. In contrast, the most specialized assignment aims to assign each

member to a single task, with any residual workload allocated to another member due to

unequal task demand (Sm). Since members are homogeneous, it doesn’t matter who handles

13Some teams cannot assign one task per member because some tasks require multiple units of labor.
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the leftover tasks. One interpretation of the member handling the leftover tasks (e.g., member

B) could act as a manager overseeing various tasks.

[Table 3 about here.]

To measure the degree of specialization in Am, I calculate the distance between Am and the

fully specialized benchmark Gm, normalized by the distance between the equal split benchmark

Sm and Gm, as defined in Definition 3. This yields the team specialization index SPEm ∈ [0, 1],

which captures how far the actual task allocation Am deviates from an equal division of labor,

relative to the fully specialized benchmark. A higher value of SPEm indicates that the team’s

task allocation is closer to full specialization.

There are many ways to measure the distance between two matrices. In this paper, I use

Euclidean distance. 14 I calculate the team specialization index SPEm

SPEm =
d(Am, Gm)

d(Sm, Gm)

where d(·, ·) denotes the Euclidean distance between two task allocation matrices. The

numerator is:

d(Am, Gm) =

√∑
i,j

(Am(i, j)−Gm(i, j))
2

The denominator, d(Sm, Gm), captures the distance between equal and fully specialized

allocations. Let αm(j) be the total demand for task j in team m, and Nm the number of team

members. Then:

d(Sm −Gm) =

√∑
j

⌊αm(j)⌋︸ ︷︷ ︸
# of 1s

·
(
1− αm(j)

Nm

)2

+ (Nm − ⌈αm(j)⌉)︸ ︷︷ ︸
# of 0s

·
(
αm(j)

Nm

)2

+ (⌈αm(j)⌉ − ⌊αm(j)⌋) ·

αm(j)− ⌊αm(j)⌋︸ ︷︷ ︸
residual workload

−αm(j)

Nm

2

14I only focus on teams with more than 3 members and more than 1 task type. Mathematically, when
|Km|=1 or Nm=1,SPEm is not well-defined. I also used Kullback-Leibler divergence to measure the distance
between the matrices, and the correlation between the specialization indices calculated with Euclidean distance
and Kullback-Leibler divergence was 0.971.
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To apply the specialization index SPEm to empirical data, each code file is categorized into

one of the 10 task types outlined in Table 1. Using this classification, I compute the fraction

of code files associated with each task type that each team member handles every month,

which forms the matrix Am(i, j).
15 For example, consider a team with two tasks: Front-end

Development and Back-end Development. If a member exclusively works on files related to

Front-end Development, her task assignment would be represented as Am(i) =
[
1 0

]
.

Figure 3a presents the distribution of the team specialization index SPEm for teams with

more than 3 members and more than 1 task type, illustrating both the overall distribution and

its variation by team size. I restrict the sample to teams to ensure that specialization is both

possible and meaningful. In very small teams or single-task settings, there is limited scope for

division of labor, and the specialization index becomes mechanically constrained.

Team specialization index SPE ranges from 0.36 at the 25th percentile to 0.76 at the 75th

percentile across teams and year-months, with a mean of 0.56 and a standard deviation of

0.28. Many teams adopt highly specialized structures (values near 1), while others exhibit no

specialization (value of 0). Most teams fall within the 0.4–0.7 range, suggesting a moderately

specialised division of labour.

Figure 3b shows the distribution of specialization by team size. Each panel corresponds to

a different team size, ranging from 4 to 15 members. While the overall distribution is stable

across sizes, larger teams tend to specialize more. Figure D1 explores related patterns along

other organizational dimensions.

[Figure 3 about here.]

3.2 Team Productivity Measure

Measuring productivity is challenging. I construct four metrics to capture different dimen-

sions of team-level productivity, drawing on insights from the software engineering literature.

The metrics include output quality, output quantity, submission acceptance rate, and problem-

solving speed.

Output Quality. I measure team output quality using GitHub stars, and track the number

of stars each team receives monthly. GitHub users can give a project a star to express their

interest and appreciation. Each user can only give one star to a project, and this action is not

anonymous. GitHub uses these stars to recommend content to users on their dashboards, and

15An alternative approach would be to measure task assignment based on the fraction of time each member
allocates to different tasks. However, I rely on the number of code files due to the challenge of precisely observing
the time spent on each file.
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they also serve as an indicator of community satisfaction. Prior work finds that 75% of devel-

opers consider a project’s star count before adoption (Borges and Valente, 2018). Additionally,

each star is estimated to carry a market value of roughly 0.88 USD (Eldeeb and Sikora, 2023).

To measure a team output quality, Figure E1 shows an example of cumulative stars over time.

Output Quantity. I measure output quantity using the number of lines of code produced

by team members each month. The relationship between quantity and productivity is difficult

to determine, as coding techniques like loops can reduce the number of lines without affecting

functionality. Despite the limitation, quantity metrics still offer valuable insights into the

volume of code generated, with the number of lines serving as a general indicator of a team’s

overall output (Vasilescu et al., 2015; Casalnuovo et al., 2015; Wagner and Ruhe, 2018).

Submission Acceptance Rate. This metric evaluates the success rate of code submissions

through pull request (PR), similar to measuring product passing rate in manufacturing. It is

calculated as the ratio of successfully merged PRs to the total number of PR submitted in a

given month. Developers create branches to isolate development work without affecting others

and then use PRs to merge those branches once complete. PR can be rejected when conflicts

arise, such as when both the PRs and target branches modify the same part of a file differently,

GitHub is unable to automatically decide which changes to keep. Additionally, PRs can fail

if developed do not adhere to branch protection rules or if they do not pass required checks.

Reviewers may also reject PRs due to issues with code quality, design, or functionality issues.

This requires developers to address feedback and update their PRs accordingly. A low PR

success rate indicates teams frequently encounter conflicts or require significant rework before

merging code. Figure E4 provides examples of the success and failure of PRs.

Problem-Solving Speed. This metric captures the duration between the creation of an issue

on GitHub and its initial closure. Users create issues to raise questions or report problems,

which are then addressed and closed by team members. Once resolved, the issue is closed,

indicating successful problem resolution. This metric is constructed by tracking issues opened

within a given month and recording the time to their first closure. It serves as an indicator

of the team’s efficiency in handling issues. Figure E5 provides an example of one issue from

opening to closing.

Descriptive statistics are provided in Table 4.

[Table 4 about here.]
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4 Stylized Facts

This section presents stylized facts about team specialization and productivity.

Fact 1 Teams become slightly more specialized over time

Figure 4 shows a binned scatter plot of team specialization over time. I only include teams

active for at least 10 months and calculate their average specialization over that period. I also

control for 10 task distribution 16and team size to avoid mechanical effects from new members

or changing tasks. Over 10 months, the average team specialization index increases from 0.575

to 0.595, a 2 percentage point rise. This suggests that most of the variation in specialization is

due to differences across teams, not time trends.

[Figure 4 about here.]

Fact 2 Higher team specialization is associated with lower output quality.

Figure 5 presents a binned scatter plot showing the relationship between organizational special-

ization and output quality, measured by the log of monthly GitHub stars. To address potential

omitted variable bias, I control for several confounding factors. First, I include task demand

distribution to account for variation in project scope and complexity. Second, I add fixed effects

for team age to capture lifecycle dynamics that may jointly influence specialization and output

quality.17 Third, I control for time-invariant differences by including fixed effects for teams,

members, and team size.

After accounting for these factors, the results indicate a negative relationship between team

specialization and project quality: teams with more specialized structures exhibit lower quality.

[Figure 5 about here.]

Table 5 reports results from OLS and Poisson pseudo-maximum likelihood (PPML) regres-

sions. In the OLS models, where the dependent variable is log monthly stars, team specialization

( SPE) is negatively associated with output quality across all specifications. Column (1) shows

that a one standard deviation increase in specialization (0.26 points) is associated with a 7.98%

decrease in monthly stars. The estimated effect decreases to 2.21% in Column (4) after con-

trolling for team and member fixed effects, but remains statistically significant. The decline

in the coefficient after adding team fixed effects indicates that most of the raw negative cor-

relation is explained by differences across teams. However, the persistent negative effect even

16Task types are defined based on code file names using a topic classification model. See Section 2.3 for
details.

17For example, teams in active development may attract more user attention and adopt different task struc-
tures than those in maintenance.
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after controlling for both team and member fixed effects suggests that within-team increases in

specialization over time are still associated with lower output quality.

In the Poisson models, where the dependent variable is the count of monthly stars, the

negative relationship between specialization and output quality is pronounced. Column (1)

shows that a one standard deviation increase in the specialization index is associated with a

13.0% decrease in expected monthly stars. After controlling for team and member fixed effects,

the effect remains statistically significant: a one standard deviation increase in specialization is

still associated with a 4.3% decrease in output quality.

[Table 5 about here.]

Fact 3 Higher team specialization corresponds to lower output quantity.

Figure 6 illustrates the relationship between team specialization and the number of lines of code

produced by team members each month. The findings align with the specification in Figure 5,

revealing that more specialized teams tend to produce less coding output.

[Figure 6 about here.]

Table 6 reports the regression results. In the OLS models, where the dependent variable

is the log of lines of code, team specialization (SPE) is negatively associated with output

quantity across all specifications. Column (4) shows that a one standard deviation increase in

specialization (0.26 points) is associated with a 24.3% decrease in lines of code. The Poisson

models yield consistent results. Column (4) indicates that a one standard deviation increase in

specialization corresponds to a 15.8% decrease in the expected number of lines of code.

[Table 6 about here.]

Fact 4 Specialized teams achieve higher acceptance rates but take longer to resolve user issues.

Figures 7a and 7b illustrate the trade-off between task-specific and general human capital. Un-

like Figure 5, these analyses include additional fixed effects: the number of code submissions (for

acceptance rates) and the number of questions (for resolution time). This adjustment ensures

that the relationships are not driven by differences in coding activity or inquiry frequency.

Figure 7a shows that code acceptance rates increase with team specialization. This may

reflect better code from focused work—or that others are too unfamiliar with the code to

evaluate and reject it. In contrast, Figure 7b shows that specialized teams take longer to

resolve user issues. This delay likely occurs because effective problem-solving often requires

knowledge from multiple areas, such as system design, user interface, and data management.
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Figure 7c examines the relationship between team specialization and level of discussion.

Specialized teams tend to exchange fewer comments, suggesting lower levels of internal commu-

nication and knowledge sharing. This pattern supports the idea that while specialization builds

task-specific skills, it may reduce cross-task knowledge and limit diffusion within the team.

[Figure 7 about here.]

Table 7 and Table 8 present the regression results. In Column (4), a one standard devia-

tion increase in specialization is associated with a 0.39 percentage point increase in the code

acceptance rate, equivalent to a 0.47% increase relative to the mean acceptance rate of 82.4%.

However, it also leads to a 1.08-day delay in problem resolution time. These results suggest

that while specialization may improve code quality, it slows down problem-solving.

[Table 7 about here.]

[Table 8 about here.]

Fact 5 Team members have similar demographic compositions regardless of team specialization.

To measure diversity, I follow the literature on ecological diversity and use the Shannon -

Wiener Index to quantify team composition diversity. For example, the Gender Diversity Index

is calculated as:

H ′ = −
S∑

i=1

(pi ln pi)

where H ′ represents gender diversity index, S is the total number of different categories (e.g.,

male and female ), and pi is the proportion of individuals in the i-th gender category. This

index measures both the abundance and evenness of gender within the team. A higher gender

diversity index indicates greater diversity, meaning that the team has a more balanced gender

distribution (Krebs, 1989).

Figure 8 illustrates the relationship between organizational specialization and diversity

across two dimensions: gender and race. There is little difference in gender and race diver-

sity among teams with different levels of specialization. Teams with high specialization and

those with low specialization tend to have a similar demographic composition of people.

[Figure 8 about here.]
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5 Empirical Strategies

Descriptive evidence shows a negative correlation between specialization and team produc-

tivity. However, task allocation is often endogenous: managers may change team structures

in response to performance problems or shifts in workload. To address this concern, I exploit

a platform feature that automatically distributes tasks among eligible team members. This

assignment reduces task allocation specialization by assigning work more evenly. I implement a

matched difference-in-differences design, comparing teams that adopt this feature (treatment)

with similar teams that do not (control). Matching on pre-treatment characteristics reduces

selection bias and improves balance, enabling a more credible estimate of the effect of special-

ization on team productivity.

5.1 GitHub Automatic Assignment Feature

I exploit GitHub’s auto-assignment feature, which introduces exogenous variation in team

specialization by randomly distributing tasks among eligible team members. This system auto-

matically assigns contributors to both Pull Requests (for code review) and Issues (such as bug

reports or feature requests), replacing manual assignment with randomized allocation. Unlike

traditional workflows, where some members repeatedly handle specific types of tasks, this fea-

ture ensures a more balanced workload and uniform task exposure. Adopting the feature shifts

teams toward a more generalized task structure, reducing persistent specialization.

Teams enable this feature via configuration files, as illustrated in Figure E6. Table 9 lists

these files and explains their functions.

[Table 9 about here.]

Figure 9 compares average team characteristics by adoption status. Teams that adopt the

auto-assignment feature are significantly larger (mean size 5.47 vs. 3.96) and more active across

all metrics. They handle more tasks (4.41 vs. 3.46), submit more pull requests (25.62 vs. 15.38),

contribute more code (30,076.81 vs. 24,055.74 lines), and attract more attention from users, as

indicated by higher monthly stars (44.54 vs. 15.92). They also engage in more platform activities

(610.83 vs. 312.60 actions). These patterns suggest that adoption is concentrated among larger

and more collaborative teams, potentially to support scalable and balanced workflows.

[Figure 9 about here.]

5.2 Matched Sampling Procedure to Select Comparison Group

Given substantial baseline differences across teams, a key challenge is to identify an appropri-

ate comparison group for teams that adopt the auto-assignment feature. I address this by using
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a matched sampling procedure to construct a control group of placebo-adopting teams—teams

that did not adopt the feature but have lagged characteristics similar to those of one of the

treatment group teams with adoption. This procedure is similar to Jäger et al. (2024).

I let t denote calendar time, d the event time (i.e., the month of adoption), and k = t − d

the number of months relative to the event. For each event month d from 2017 to 2023 (For

example, 2017-12), I identify the set of teams that first adopt the auto-assignment feature,

defined as the first appearance of an automation-related configuration file described in Table 9.

Those teams are in the treatment group. For each team m that adopted the feature in d, I

record a rich set of baseline characteristics from d − 5 to d − 1. For each event month d, the

comparison group is sampled from the set of teams that never adopted the feature during the

whole sample period. I can also record baseline characteristics in from d − 5 to d − 1 for this

comparison group pool.

I implement a matched sampling procedure separately for each event month d. For each

treated team m, I select a team from the comparison group pool with similar lagged character-

istics. Specifically, I compute the mean of each team’s characteristics over this window and then

match on deciles of average team size, task types, and output levels. Rather than matching on

deciles in each period, I match on the mean value of each variable from d − 5 to d − 1. This

strategy captures persistent team characteristics while increasing the number of matched pairs.

When no exact match can be found, the adopted team m will not be included in the sample.

When multiple potential matches for an adopted team m are available, I randomly select one

team as the matched control group.

I successfully match 3,864 treated teams to control teams, achieving a 98.2% matching suc-

cess rate. Table D1 reports summary statistics for both groups at the time of auto-assignment

adoption. The two groups are well balanced across key team and performance characteristics,

including variables not directly used in the matching procedure.

5.3 Dynamic Effects

Building on the identification strategy in Sharoni (2024); Jäger et al. (2024), I estimate the

effect of automatic task assignment based on the following dynamic difference-in-differences

framework. This stacking method follows Roth (2022) to ensure a robust estimation of pre-

trends. I then estimate equation (1),

Ymdt − Ymd,d−1 =
6∑

k=−5
k ̸=−1

δk × 1(t− dmd = k) +
6∑

k=−5
k ̸=−1

βk × 1(t− dmd = k)× Treatedmd

+ λf(m) + θtsizemt +X′
mtΓ + εmdt

(1)
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where Ymdt is the outcome of interest for team m observed in month t in which the team

adopted (or matched a placebo team) occurring in month d. The model includes fixed effects

for relative time δk. The model in (1) does not include calendar year fixed effects, as calendar

time is balanced between the comparison and treatment group as a consequence of the matched

sampling procedure. Treatedmd is an indicator function for treatment status, whether team m

actually adopted the feature in month d or was chosen as a matched control. I also include firm

fixed effect λf(m), team size fixed effect θtsizemt and control for the 10 task demand Xmt.

The coefficients of interest βk, capture the effect of an actual automatic assignment feature

adoption in time k = t− d in the treatment group and are normalized to zero in k = −1 given

the difference specification. Standard error is clustered at the matching-pair level, as suggested

by Abadie and Spiess (2022) to account for correlated shocks within observables used in the

matching.

Figure 10 reports the point estimates from equation (1). No pre-trends are reported. It

also reveals that the specialization decreases when teams adopt the automatic task assignment

features. The impact on team performance varies across different outcomes, consistent with

the descriptive patterns in Section 4. Compared to the matched control group, treated teams

exhibit higher productivity, as reflected in both output quality and quantity. At the same time,

teams that adopt automatic assignment experience lower code acceptance rates and increased

discussion activity.

[Figure 10 about here.]

5.4 Baseline Regression

As a way of summarizing the results, I use a second specification that directly compares

the pre- and post-adoption periods, rather than tracing dynamic effects over time. In this

alternative approach, the treatment indicator Tm turns to one after the time of the real or

placebo adoption. This allows for a more concise assessment of the impact without focusing on

the dynamic changes over time. This specification is given by

Ymdt − Ymd,d−1 =δ × 1(t− dmd ≥ 0) + β × 1(t− dmd ≥ 0)× Treatedmd

+ λf(m) + θtsizemt +X′
mtΓ + εmdt

(2)

I include firm fixed effect λf(m), team size fixed effect θtsizemt and control for the 10 task demand

Xmt. The standard error is clustered at the matching-pair level.

Table 10 reports the regression results. Column (1) shows a negative and statistically

significant coefficient on the specialization index (β = −0.01), indicating that teams become

less specialized following the adoption of the auto-assignment feature. Columns (2) and (3)
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show that, relative to placebo teams, treated teams experience a 4% increase in output quality

and a 21% increase in output quantity—both statistically significant and suggesting substantial

productivity gains. Consistent with Fact 4, the code acceptance rate decreases 1.2% (from a

baseline of 0.83). The effect on problem-solving speed is statistically insignificant. Finally,

Column (6) shows that team discussion increases significantly, supporting the interpretation

from Figure 7c that generalized teams engage in broader communication.

[Table 10 about here.]

6 Conclusion

This paper investigates how specialization in team task allocation affects productivity and

knowledge sharing in software development. Although the traditional view, dating back to

Smith (1776), argues that specialization raises productivity, my findings reveal a negative re-

lationship between team specialization and productivity. Excessive specialization appears to

inhibit the general human capital needed for innovative work, where next steps are uncertain

and cross-task feedback is critical.

To address endogeneity in task allocation, I exploit GitHub’s automatic task assignment

feature, which distributes tasks evenly among team members and reduces specialization. A

matched difference-in-differences analysis shows that teams become more productive when they

become less specialized.

This study also develops new empirical measures for specialization and productivity. I

construct a dataset linking team task allocations—based on the code developers produce—to

various productivity metrics. The specialization measure captures deviations from fully gener-

alized or fully specialized benchmarks, allowing for comparisons across teams and over time.

The productivity measures capture both output quantity (lines of code) and quality (project

popularity), along with finer indicators such as code acceptance rates and problem-solving

speed. Together, these measures provide a comprehensive view of how specialization shapes

innovation.

The findings highlight the organizational design in innovative industries. While earlier

research emphasizes the benefits of specialization through task-specific human capital accumu-

lation, I document an important trade-off: excessive specialization can limit the general skills

critical for complex problem-solving and knowledge integration. This distinction matters as

economies increasingly shift toward knowledge work, where solutions often require integration

across domains.

Finally, the results contribute to the broader literature on firm organization and productivity

variation. Persistent differences in organizational structures may reflect not only coordination
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costs or information frictions but also differences in optimal specialization, depending on the

production environment. Future work could extend the measurement framework developed

here to study these trade-offs across industries and types of knowledge work.
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Figure 1: Schematic Representation of GitHub Structure

(a) Organization and Team

(b) Team Member and Volunteers

Notes: As shown in Figure 1a, some repositories belong to the organization, while others do not. In this project,
I include only repositories affiliated with the organization to exclude those intended for individual purposes or
hobbies, such as personal websites. Figure 1b illustrates the structure within a single organization. For instance,
within Microsoft, there are multiple teams, each with various users. Some users are official team members (see
Section 2.1.2), while others are volunteers who also participate and contribute. This project focuses solely on
the activities of team members.
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Figure 2: Code File and Task-Member Snapshot

(a) Code File Example

(b) Task-Member Example

Notes: Figure 2a illustrates an example of code file names used for task type classification. The input data
consists of the folder name combined with the file name, such as “build/cli-build-alpine” in the example above.
Figure 2b presents a data snapshot of Member “joaomoreno” from Team “vscode” highlighting their labor share
in task types 4 and 1.
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Figure 3: Distribution of Team Specialization Index

(a) Specialization
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Notes: I include team-month observations with more than 3 members and more than 1 task type in a given
month. A higher index value reflects a greater degree of specialization. FigureD1 provides more details about
the distribution of the team specialization index.
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Figure 4: Team Specialization Over Time

.57

.575

.58

.585

.59

.595

S
p
e
c
ia

liz
a
ti
o
n

0 2 4 6 8 10

Active month

Teams active at least 10 months
Controls: task distribution
Fixed effect: Team size

Notes: The figure shows a binned scatter plot illustrating the evolution of team specialization over time,
specifically for teams that are actisumve for at least 10 months, while controlling for task distribution and team
size fixed effect.
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Figure 5: Team Specialization and Output Quality
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Notes: This figure presents a binned scatter plot, accounting for task distribution. The analysis also includes
team age, team size, member fixed effects, and team fixed effects. These fixed effects help control for differences
in member composition, team size, and the impact of team project types on team productivity. Observations are
at the individual level and are weighted by 1/team size. The graph highlights a stronger negative relationship
between specialization and output quality.
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Figure 6: Team Specialization and Output Quantity
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Notes: This figure presents a binned scatter plot, accounting for task distribution and team age. The analysis
also includes team size, member fixed effects, and team fixed effects. These fixed effects help control for
differences in member composition, team size, and the impact of team project types on team productivity.
Observations are at the individual level and are weighted by 1/team size. The graph highlights a stronger
negative relationship between specialization and output quantity.
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Figure 7: Team Specialization Trade-off

(a) Code Acceptance Rate
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Figure 7: Team Specialization Trade-off (cont.)

(c) Discussion
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Notes: This figure shows the correlation between team specialization and code acceptance rate (Panel 7a),
problem-solving speed (Panel 7b), average comments per question (Panel 7c) after controlling for task demand
distribution as well as team age, team size, team, member fixed effects. The observations are at the individual
level and weighted by 1/team size.
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Figure 8: Team Specialization and Demographic Composition

(a) Gender

(b) Race

Notes: The positive relationship between organizational specialization and diversity in gender (Panel 8a), and
race (Panel 8b) is presented in a binned scatter plot. I calculate each diversity index separately and exclude
teams with only one member. Gender is predicted based on developers’ profile images and names. Race is
predicted using the name. Teams with a single task are also excluded. Section 2 provides more details.
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Figure 9: Comparison of Team Characteristics by Automatic Feature Adoption

Notes: This figure compares average team characteristics between teams that adopted the auto assignment
feature and those that did not, using data from 2017 to 2023.
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Figure 10: Dynamic Effects for Task Assignment Adoption

(a) Team Specialization Index
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Figure 10: Dynamic Effects for Automatic Assignment Adoption (cont.)

(c) Output Quantity

−.3

−.2

−.1

0

.1

.2

.3

.4

E
ff
e
c
t 
o
n
 L

o
g
 (

C
o
d
e
 L

in
e
s
)

−5 −4 −3 −2 −1 0 1 2 3 4 5 6

Event Month

(d) Code Acceptance Rate
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Figure 10: Dynamic Effects for Task Assignment Adoption (cont.)

(e) Problem Solving Time
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Notes: This plot presents the effect of auto-assignment feature adoption on team specialization and productivity.
The vertical lines represent a 90% confidence interval with standard errors clustered at the matching level. The
dependent variables—team specialization index (SPE), team output quality, quantity, problem-solving time,
code acceptance rate, and communication are defined in Section 3.
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Table 1: Task Classification

Task Type Keywords (LDA result) Occupational Role

1 Frontend development Frontend, UI Front-end engineer
2 Server management, Platform migration Client, server DevOps engineer
3 Android mobile development Kotlin, runtime Mobile engineer
4 Cloud feature implementation Feature, sdk Cloud engineer
5 Data management Data, web Data engineer
6 Internal system management Internal, apache System Administrator
7 CLI Development and Framework User, cli Technical Writer
8 API and Backend Services API, controller Back-end engineer
9 Integration system Integration, function System Integrator
10 App Development and UI Design App, style App Developer

Notes: This table shows the results of task classification using LDA on 34,762,813 code filenames from 2017 to
2023. Keywords are from the LDA model. Task summary and job role are based on keywords.

Table 2: Task Share Statistics

Task Type N Mean St. Dev. Min P75 Max

Frontend development 1054274 0.461 0.291 0 0.711 0.998

Server management 1054274 0.056 0.143 0 0.019 0.994

Android mobile development 1054274 0.056 0.138 0 0.033 0.994

Cloud feature implementation 1054274 0.046 0.126 0 0.010 0.993

Data management 1054274 0.059 0.143 0 0.032 0.997

Internal system management 1054274 0.047 0.128 0 0.008 0.998

CLI Development and Framework 1054274 0.051 0.129 0 0.028 0.993

API and Backend Services 1054274 0.078 0.164 0 0.069 0.998

Integration system 1054274 0.055 0.135 0 0.030 0.993

App Development and UI Design 1054274 0.091 0.171 0 0.103 0.997

Notes: This table provides summary statistics for the share of labor required by each task type across all team-
months from 2017-01 to 2023-12. Sample includes only teams with valid specialization index (Team size > 1 &
Task types > 1).

35



Table 3: Task Assignment Example

Task

1 2 3

A 1/2 1/6 1/3 1

B 1/2 1/6 1/3 1

C 1/2 1/6 1/3 1

3/2 1/2 1

Actual (Am)

Task

1 2 3

A 1/2 1/6 1/3 1

B 1/2 1/6 1/3 1

C 1/2 1/6 1/3 1

3/2 1/2 1

Generalized (Gm)

Task

1 2 3

A 1 0 0 1

B 1/2 1/2 0 1

C 0 0 1 1

3/2 1/2 1

Specialized (Sm)

Notes: Each row sum in the matrix represents a member’s task assignment, lm(i) and each column sum is the
task share αm(j). Given three members (A, B, C) and three task types (1, 2, 3), Actual (Am) shows an example
of how each member allocates their labor supply across the tasks. The most generalized (Gm) assignment is
when all members evenly split their labor across all tasks as defined in Definition 1, and the most specialized
assignment aims to assign each member to a single task, with any remaining task share allocated to another
member due to unequal task shares (Sm) as defined in Definition 2.

Table 4: Descriptive Statistics

N Mean St. Dev. Min Median Pctl(75) Pctl(95)

SPE 439079 0.59 0.24 0.00 0.59 0.75 1.00
Team size 439079 7.39 8.77 4 5 7.0 17
Task type 439079 4.69 2.24 2 4 6 9
Lines of code 439079 43558.76 372784.61 0.00 3325 12926 119168
Activities 439079 750.20 2322.29 0.00 381 784 2379
Monthly Stars 439079 44.55 254.21 0.00 3 18 197
Comments 439079 144.98 362.40 0.00 54 145 533
Solving time 300034 51.18 122.35 0.00 13.86 41.36 224.82
Edited files 439079 570.47 2985.87 0.00 123 363 1917
Code acceptance rate 433833 0.82 0.17 0.00 0.86 0.94 1.00
Create year 439079 2018.14 2.82 2011 2018 2020 2022

Notes: This table provides the summary statistics for the main variables of interest at the team-
month level. Data is from 2017-01 to 2023-12. Only include teams with more than 3 members. Code
acceptance rate, activities, edited files, lines of code, and communication metrics are measured for
team members only.
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Table 5: Specialization and Team Output Quality

(1) (2) (3) (4)

OLS: Dep Var- Log(Monthly Team Stars)

SPE -0.320*** -0.305*** -0.078*** -0.086***
(0.021) (0.021) (0.007) (0.007)

Dependent mean 2.13 2.13 2.13 2.13
R-squared 0.648 0.650 0.903 0.910
Observations 1,823,750 1,823,750 1,823,750 1,770,310

Poisson: Dep Var- Monthly Team Stars

SPE -0.424*** -0.368*** -0.140*** -0.143***
(0.060) (0.058) (0.042) (0.035)

Dependent mean 44.550 44.550 44.550 44.550
Observations 3,192,051 2,968,104 3,076,921 2,996,394

10 Task type share controls ✓ ✓ ✓ ✓
Team age FE ✓ ✓ ✓ ✓
Team size FE ✓ ✓ ✓ ✓
Firm FE ✓ ✓
Project type FE ✓
Team FE ✓ ✓
Member FE ✓

Notes: This table presents OLS and Poisson pseudo maximum likelihood (PPML) regression results on the
impact of team specialization. The outcome variable for OLS is the log of monthly stars received by each team,
while the outcome variable for Poisson is the monthly star count, which captures the extensive margin. Team
age is calculated as the difference between the calendar year and the year the team was created. Observations are
at the individual level and weighted by 1/team size. Standard errors are clustered at the team level. *p < .10,
** p < .05, *** p < .01.
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Table 6: Specialization and Team Output Quantity

(1) (2) (3) (4)

OLS: Dep Var- Log(Code Lines)

SPE -1.224*** -1.260*** -0.954*** -0.934***
(0.021) (0.022) (0.015) (0.015)

Dependent mean 8.124 8.128 8.124 8.118
R-squared 0.398 0.403 0.597 0.616
Observations 3,212,871 2,982,107 3,212,871 3,124,751

Poisson: Dep Var - Code Lines

SPE -0.369*** -0.406*** -0.576*** -0.554***
(0.108) (0.119) (0.072) (0.073)

Dependent mean 43558.76 43558.76 43558.76 43558.76
Observations 3,243,291 3,000,021 3,235,747 3,147,523

Task type share control ✓ ✓ ✓ ✓
Team age FE ✓ ✓ ✓ ✓
Team size FE ✓ ✓ ✓ ✓
Firm FE ✓ ✓
Project type FE ✓
Team FE ✓ ✓
Member FE ✓

Notes: This table presents OLS and Poisson pseudo-maximum likelihood (PPML) regression results on the
impact of team specialization on code quantity. The outcome variable for OLS is the log of lines of code
additions, while the outcome variable for Poisson models is the raw count of lines of code, which captures the
extensive margin. Team age is calculated as the difference between the calendar year and the year the team was
created. Observations are at the individual level and weighted by 1/team size. Standard errors are clustered at
the team level. p < .10, ** p < .05, *** p < .01.
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Table 7: Specialization and Code Acceptance Rate

(1) (2) (3) (4)

SPE -0.010*** 0.020*** 0.015*** 0.015***
(0.002) (0.001) (0.001) (0.001)

Task type share control ✓ ✓ ✓ ✓
Team size FE ✓ ✓ ✓ ✓
Firm FE ✓ ✓
Project type FE ✓
# code submission ✓ ✓ ✓
Team FE ✓ ✓
Member FE ✓
R-squared 0.217 0.214 0.417 0.442
Dependent mean 0.824 0.825 0.824 0.824
Observations 3,213,677 2,982,846 3,213,677 3,125,570

Notes: This table presents OLS regression results examining the relationship between team specialization and
code submission acceptance rate. The dependent variable is the average code submission rate by team mem-
bers. Team age is calculated as the difference between the calendar year and the year the team was created.
Observations are at the individual level and weighted by 1/team size. Standard errors are clustered at the team
level. p < .10, ** p < .05, *** p < .01.

Table 8: Specialization and Problem-Solving Speed

(1) (2) (3) (4)

SPE 17.655*** 11.247*** 4.411** 4.155**
(1.496) (1.540) (1.385) (1.332)

Task type share control ✓ ✓ ✓ ✓
Team age FE ✓ ✓ ✓ ✓
Team size FE ✓ ✓ ✓ ✓
Firm FE ✓ ✓
Project type FE ✓
# question FE ✓ ✓ ✓
Team FE ✓ ✓
Member FE ✓
R-squared 0.166 0.166 0.355 0.398
Dependent Mean 51.182 51.372 51.182 51.579
Observations 2,364,271 2,267,892 2,364,271 2,294,737

Notes: This table presents OLS regression results examining the relationship between team specialization and
issue solving time. The dependent variable is the average time a team takes to resolve an issue raised by
users. Team age is calculated as the difference between the calendar year and the year the team was created.
Observations are at the individual level and weighted by 1/team size. Standard errors are clustered at the team
level. p < .10, ** p < .05, *** p < .01.
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Table 9: Configuration Files Matching Auto-Assignment Detection Pattern

File Pattern Purpose

codeowners Specifies default reviewers by file path. When a
matching file changes, GitHub automatically
requests review from listed users or teams.

.github/auto assign.yml or

.github/auto-assign.yml
Defines reviewer or assignee rules (e.g., random
selection) for the auto-assign GitHub Action. Used
to automate task allocation.

.github/dependabot.yml Configuration for Dependabot, which automates
dependency updates. Not reviewer-specific, but
reflects general automation practices.

.github/reviewer lottery.yml or

.github/reviewer-lottery.yml
Specifies pools and rules for bots that randomly
assign reviewers to pull requests.

.github/assign reviewers.yml or

.github/assign-reviewers.yml
Generic reviewer configuration file supporting
round-robin, random, or weighted assignment logic.

.github/workflows/assign reviewers.yml
or
.github/workflows/assign-reviewers.yml

Triggers assignment logic via GitHub Actions, often
referencing reviewer config files.

.github/workflows/auto assign.yml or

.github/workflows/auto-assign.yml
Runs the auto-assign workflow for automated
reviewer selection on pull request events.

.github/workflows/.mergify.yml Configures the Mergify bot to auto-merge pull
requests after reviewer approval or status checks.

Notes: This table summarizes the set of configuration files captured by the regular expression used to detect
GitHub teams adopting automated task and reviewer assignment. These files reflect a combination of reviewer-
focused settings and general automation workflows.
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A Working on Model

In this theoretical section, I provide a simple framework that sets the stage for under-

standing the potential directions of effect and the mechanisms driving it. It is used to form

predictions and to guide the empirical tests. The model incorporates two key drives of specializa-

tion on team productivity: task-specific human capital accumulation and cross-task knowledge

spillover. While both parts are integral components of the team production function, the chan-

nels through which they affect team’s productivity are distinct. Therefore, the model allows

me to explore scenarios where the benefits of specialization outweigh the cost.

A.1 Setting

Each team produces a single product (e.g., a website) that requires a fixed set of tasks to

be completed by its members. Members have no preference over tasks, and their wages are

determined by the firm rather than by the team. Teams cannot choose which members to hire

or which tasks they must undertake; however, they do decide how to allocate members across

these tasks. That is, both the set of members and the set of tasks are exogenous, while the

assignment of members to tasks is endogenous. Following Becker and Murphy (1992), assume

all members are homogeneous, supply labor inelastically, and receive a constant wage w. Let

J denote the set of all possible tasks. Each team m ∈ {1, . . . ,M} consists of Nm ∈ N members

and require to complete a subset of tasks Jm ⊆ J. The task allocation within team m is

represented by

A ∈ RNm×Jm
+ ,

where A(i, j) is the amount of labor member i allocates to task j as discussed in Section3.1.

For notational simplicity, the subscript m is suppressed when no confusion arises.



Each member i’s output on task j is given by

q(i, j) =

 z(i, j)
σ−1
σ︸ ︷︷ ︸

Knowledge Spillover

+ A(i, j)
σ−1
σ︸ ︷︷ ︸

Task-specific HC

 σ
σ−1

A(i, j)

where σ > 1 is the elasticity of substitution between knowledge spillovers and task-specific

human capital.

We define

z(i, j) = α(j)− A(i, j),

where α(j) =
∑

iA (i, j) to capture the idea that the more labor other members devote to task

j, the greater the feedback and assistance (knowledge spillover) available to member i.

The task-level output is the sum of all members yields the total output for task j:

y(j) =
N∑
i=1

q(i, j).

and the team’s final output is given by a production function

Y = F
(
y(1), y(2), . . . , y(J)

)
,

which is strictly concave and increasing in each y(j).

Teams also incur a coordination cost, cm(A), that depends on how labor is allocated across

tasks. I assume there is no coordination cost when the team adopts the most specialized task

allocation Sm and the coordination cost grows as the distance between S and A increases, which

essentially corresponds to the specialization index SPE=d(A,G)
d(S,G)

.

The team maximization problem is

max
A∈RN×K

+

Y − wN − cm(A) (3)

s.t.
∑

iA (i, j) = αj ∀j and
∑

j A (i, j) = 1

A.2 Simple Example

Assume σ=−∞ and c = 0 and there are only two members and two tasks with equally task

share αj.

q(i, j) = min {1− A(i, j), A(i, j)}A(i, j)

1



y(j) = min {1− A(1, j), A(1, j)}A(1, j) + min {A(1, j), 1− A(1, j)} (1− A(1, j)

A(1, 1)∗ = A(2, 1)∗ = 1/2

B Task Classification Process

[Figure B1 about here.]
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Figure B1: Word Clouds for LDA 10 Task Types

Notes: This figure presents word clouds visualizing the 10 task types identified through Latent Dirichlet Alloca-
tion (LDA) topic modeling. Each panel shows frequently occurring terms within different development domains:
data management (Topic 5), server-side development (Topic 2), runtime environments (Topic 3), client applica-
tions (Topic 7), API development (Topic 8), and web applications (Topic 10). The size of each word represents
its frequency within the topic, with terms like “data,” “api,” “user,” and “app” being particularly prominent.
This classification helps measure team specialization by categorizing tasks into distinct technical domains. Top-
ics reflect common software development tasks and technological components.

C Project Type

[Figure C1 about here.]

[Figure C2 about here.]
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Figure C1: Word Clouds for LDA 6 Project Types

Notes: This figure presents the six project types identified through Latent Dirichlet Allocation (LDA) topic
modeling. Each panel represents a distinct project category: App Development (Topic 1, dominated by
“app”), Container (Topic 2, centered on “base”), Data Tools (Topic 3, highlighted by “tool”), Education
(Topic 4, featuring “classroom”), Library&Framework (Topic 5, showing “lib”), and Web Development
(Topic 6, emphasized by “web”). The word clouds display terms scaled by their frequency within each project
type, helping classify repositories into broad development domains. Project type classification helps control
for heterogeneity across different software development contexts when analyzing the relationship between spe-
cialization and productivity. LDA analysis performed on repository metadata, README files, and project
descriptions.
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Figure C2: Team Specialization and Productivity by Project Type
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Notes: This figure presents the team specialization and productivity metrics by project types, accounting for
task distribution and team age. The analysis also includes team size, member fixed effects, and team fixed
effects. These fixed effects help control for differences in worker composition, team size, and the impact of team
project types on team productivity. Observations are at the individual level and are weighted by 1/team size.

D Additional Results

Table D1 presents summary statistics for treatment and control teams at the time of auto-

assignment adoption. The two groups are well-balanced across key team and performance

characteristics, consistent with the matching design. Treatment teams have an average team

size of 6.16, compared to 6.40 for control teams. They perform a similar number of task types

(5.09 vs. 5.06) and have comparable specialization indices (0.53 vs. 0.54). Code acceptance

rates are nearly identical across groups at 0.83 and 0.82, respectively. Differences in lines

of code (43,218 vs. 41,264) and problem-solving time (51.92 vs. 53.01 days) are small and

5



statistically insignificant. Although treatment teams receive fewer monthly stars on average

(36.01 vs. 59.98), this variable is not a matching criterion and may reflect idiosyncratic project

visibility. Overall, the balance across core attributes—team composition, specialization, and

productivity—reinforces the credibility of the matched sample and supports the identification

strategy.

[Table D1 about here.]

[Figure C1 about here.]
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Figure D1: Distribution of Team Specialization Index

(a) By Project Type
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(b) By Number of Task Type
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(c) Include Small Teams
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(d) By Team Size
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Notes: This figure illustrates the distribution of the team specialization index across various dimensions. Figures
D1a and D1b display the distribution by project type and number of tasks for all team-month observations,
excluding teams with fewer than four workers. Additional details on project types and task types are provided
in Sections 2.4 and 2.3. Figures D1c and D1d also present the distribution for small teams consisting of 2 or
3 workers. These smaller teams are excluded from the main analysis because their limited size restricts their
ability to vary their degree of specialization, resulting in most being either highly specialized or generalized.
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Table D1: Balance Table for Even Task Assignment Adoption

Team size 6.16 32052 6.40 57584 -0.25
(0.04)

Task types 5.09 32052 5.06 57584 0.03
(0.02)

Lines of code 43217.96 32212 41264.16 61160 1953.79
(2705.34)

Monthly stars 36.01 32212 59.98 61160 -23.97
(1.29)

Specialization index 0.53 32052 0.54 57584 -0.01
(0.00)

Code acceptance 0.83 31745 0.82 56693 0.01
(0.00)

Problem-solving time 51.92 21512 53.01 45397 -1.09
(0.94)

Create year 2017.12 32212 2018.13 61160 -1.01
(0.02)

Notes: The table presents summary statistics for both the control and treatment groups at event month k = 0,
each consisting of 3,864 teams. The treatment group includes teams that adopted even task assignments in
event month t. Notably, I only matched on decile of average team size, task type, and lines of code but did not
specifically match the characteristics of teams.

E Examples

[Figure E1 about here.]

[Figure E2 about here.]

[Figure E3 about here.]

[Figure E4 about here.]

[Figure E5 about here.]

[Figure E6 about here.]
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Figure E1: Star Example

Notes: This figure illustrates how project popularity is measured using GitHub’s star system, using Microsoft’s
Visual Studio Code repository as an example. Stars represent a form of peer evaluation where users can
bookmark and show appreciation for repositories they find valuable. In this example, Visual Studio Code has
received 162,000 stars, indicating its high popularity within the developer community. This metric serves as
one of our key measures of team productivity, as it captures the project’s impact and perceived value among
potential users and other developers. While not a perfect measure of quality, stars provide a standardized way
to compare project impact across different domains and team sizes.
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Figure E2: Reviewer and Assignee

Notes: The example shows a typical Pull Request (#233451) with its associated review thread. Two distinct
roles are highlighted: Reviewers (red box) who evaluate code changes and Assignees (blue box) who are respon-
sible for implementing the changes. The bottom of the image demonstrates a completed review process where
a reviewer has approved the proposed changes.
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Figure E3: Discussion Example

Notes: This figure demonstrates how technical discussions unfold in GitHub’s issue tracking system. The ex-
ample shows a TypeError issue (#226649) and the subsequent problem-solving conversation. The interaction
is structured in three parts: (1) initial question/code submission, (2) technical discussions and proposed solu-
tions, and (3) follow-up clarifications. This conversation structure allows us to measure the quantity of team
communication (number of comments).
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Figure E4: Pull Request Merge Example

(a) Manage to merge code

(b) Fail to merge code

Notes: This figure illustrates two outcomes in the code review process: successful and failed merges. Panel
(a) shows a successful merge (#226502) where submitted code changes are approved and integrated into the
main codebase. Panel (b) demonstrates a failed merge (#2265) where proposed changes are rejected. Code
acceptance rates serve as one of our key productivity metrics.
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Figure E5: Problem Solving Example

Notes: This figure demonstrates how we measure problem-solving efficiency in teams. Using issue #15 as an
example, we track three key timestamps: (1) Open time - when the issue is first reported, (2) Solving time -
duration of technical discussion and solution development, and (3) Close time - when the issue is resolved. The
time between open and close serves as our measure of problem-solving speed.
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Figure E6: Auto Assignment File Example

Notes: This figure shows the implementation of GitHub’s random assignment feature through a configuration
file. The left panel shows the team’s repository structure, while the right panel displays the auto-assignment
configuration. The timestamp of file addition marks when teams transition to more generalist task allocation,
providing our second source of identification.
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