Managing by Feedback
Jinci Liu *

November 14, 2025

(Job Market Paper - Latest Version Available Here)

Abstract

This paper studies how managers influence worker productivity through feedback. Using
data from GitHub and LinkedIn, I analyze over 200 million pieces of feedback during
code reviews across 1.7 million software teams. I apply large language models to clas-
sify feedback by tone (toxicity, positivity) and informational content (constructiveness). I
exploit random reviewer assignments to estimate the causal effects of feedback on devel-
oper productivity and retention. Toxic feedback reduces future code quantity and quality
and lowers developer retention within the firm, whereas non-toxic criticism has no such
detrimental effects. Positive feedback increases productivity and retention and generates
spillovers to coworkers. Constructive feedback does not affect future code quantity, though
it lowers quality because revisions to reviewed code crowd out time spent on new code de-
velopment. Finally, I show that feedback explains 22% of the variation in manager quality,
measured by value added to worker productivity. Overall, this paper shows that feedback
tone and information shape worker productivity and retention, offering new insights into
effective management.

*IIES, Stockholm University. Email: jinci.liuQiies.su.se.

I am grateful to Arash Nekoei, Mitch Downey, and Jésef Sigurdsson for their encouragement and feed-
back—always positive and never toxic. I also thank Huen Tat Au-Yeung, Kirill Borusyak, Konrad Burchardi,
Stefano DellaVigna, Ingrid Haegele, Martin Koenen, Kieran Larkin, Patrizia Massner, Chloé Nibourel, Torsten
Persson, Nancy Qian, David Schonholzer, Mateusz Stalinski, David Strémberg, Joonas Tuhkuri, Horng Chern
Wong, Ye Zhang, and Yimei Zou, as well as seminar participants at ITES, SOFI, SSE, the HK Labor Symposium,
and CEPR IMO& ESF. I owe special thanks to Jakob Beuschlein for his insightful feedback on instrumental
variable designs. I am also thankful to my developer friends for sharing their insights and to Ruipu Peng
and Peishan Ju for excellent research assistance in validating the LLM classifications. I acknowledge financial
support from Google Cloud Research, the Mannerfelt Foundation, and the Institute for Evaluation of Labour
Market and Education Policy (IFAU). All remaining errors are my own.

https://jinciliu.github.io/files/JC_Feedback.pdf
mailto:jinci.liu@iies.su.se

1 Introduction

What determines worker productivity? Economists have studied several drivers, such as tech-
nology, human capital, and incentives (Solow, 1957; Becker, 1964; Holmstrom, 1979). A growing
literature shows that managers play a crucial role in affecting worker productivity, but less is
known about how they achieve this effect.! This paper focuses on feedback, one of the most
direct channels through which managers interact with workers.

Feedback is prevalent in organizations, but its effect on worker productivity remains unclear.
Over 90% of managerial occupations involve giving feedback (O*NET, 2025), and leading con-
sultancies even call feedback “the fuel of development” (McKinsey, 2024). However, surveys
offer mixed evidence on its effectiveness. Some workers report that feedback improves perfor-
mance, while others find it unhelpful.? Feedback conveys information about work and carries
a tone. The tone shapes how workers interpret the information and can affect their confi-
dence, motivation, and effort. Feedback can increase productivity through learning (Mincer,
1962), motivation (Bénabou and Tirole, 2002), or effort incentives when it signals punishment
(Mirrlees, 1974, 1976). Yet, it may decrease productivity if it lowers confidence (Compte and
Postlewaite, 2004) or the perceived return to effort due to low match quality (Jovanovic, 1979).

Despite its importance, feedback remains understudied for three main reasons. First, in
most settings, feedback is verbal and rarely recorded. Second, even when written, feedback has
multiple dimensions, making it conceptually difficult to decide which to study and technically
demanding to classify them at scale. Third, identifying the causal effects of feedback on pro-
ductivity is difficult. Workers who receive different feedback may differ in unobserved ability, so
the correlation between feedback and productivity may be due to selection or reverse causality.

This paper overcome these challenges and studies how managers affect workers through
feedback. Using large language models (LLMs) to classify feedback by tone (toxicity, positivity)
and informational content (constructiveness), I provide causal evidence that feedback affects
not only worker productivity but also retention within firms and the industry. I show that
motivation created by tone, rather than by information, plays a central role in increasing
productivity. I further show that feedback is an important component of manager quality,
explaining about 22% of the variation in managers’ value-added (VA) to worker productivity.

I construct a novel dataset based on written feedback during code reviews in global software
teams on GitHub. Software development is at the core of the digital economy, which accounts for
about 10% of U.S. GDP and 8.9 million jobs in 2022 (U.S. Bureau of Economic Analysis, 2025).

LA growing literature documents that individual managers influence worker and organizational outcomes
(e.g., Ichniowski et al. (1997); Bertrand and Schoar (2003); Bandiera et al. (2007); Bloom and Van Reenen
(2007); Lazear et al. (2015); Frederiksen et al. (2020); Adhvaryu et al. (2022, 2023); Metcalfe et al. (2023);
Weidmann et al. (2025)).

2In one survey, 80% of workers felt more engaged after receiving “meaningful” feedback (Gallup, 2022). In
another, only 14% strongly agreed that the feedback they received was helpful (Sutton and Wigert, 2019).

In software development, developers submit code for integration into the team’s codebase, and
reviewers, typically senior team members, act as middle managers. They provide feedback
and decide whether to approve or request revisions. Developers must address reviewer feedback
before code integration. GitHub is the world’s largest coding platform and is used by more than
90% of Fortune 100 companies (GitHub, 2025). My analysis focuses on professional developers
working in both large technology firms, such as Google and Microsoft, and startups. Using
GitHub Archive, I measure developer productivity as weekly code quantity (lines of code) and
quality (share accepted). Further, I link developer GitHub profiles to their LinkedIn profiles to
study other labor market outcomes, such as long-term firm and industry retention. The dataset
covers 1.7 million teams and 231 million feedback messages from 2017 to 2023.

To analyze the effects of different dimensions of feedback, I classify feedback along tone
and informational content using LLMs (BERT-based models and GPT). I focus on three in-
terpretable dimensions: toxicity, positivity, and constructiveness. Each piece of feedback can
vary in all three of these dimensions. The toxicity and positivity dimensions capture the tone
of feedback, while the constructiveness dimension reflects information. Toxic feedback is inten-
tional harm, positive feedback provides encouragement or acknowledgment, and constructive
feedback offers specific, actionable information about the developer’s submitted code.?

To identify causal effects, I exploit GitHub’s reviewer random assignment system, which
automatically allocates code cases to reviewers independently of developer and case character-
istics. Some teams use scripts that randomly allocate reviewers to balance workloads, which
creates exogenous variation in feedback exposure. I identify these teams by detecting such
scripts in their codebases. I leverage the variation in reviewer feedback styles for my analysis.
For each feedback type, I construct a measure of reviewer style, defined as the reviewer’s average
tendency to give that type of feedback in other developers’ code reviews. This measure serves
as an instrument for the feedback a developer receives, as it is highly predictive of the reviewer’s
feedback style in the current case but, as I document, uncorrelated with observable developer
and case characteristics. The strategy is analogous to judge randomization, where case as-
signments are random but sentencing outcomes vary because some judges are systematically
harsher or more lenient (Dobbie and Song, 2015; Bhuller et al., 2020; Agan et al., 2023)

I find that different types of feedback have distinct effects on workers’” future productivity

4

and retention.* Toxic feedback reduces future productivity substantially. In the month after

receiving toxic feedback, developers produce 42.9% less new code for their teams. Developers

3Each feedback message is coded along three binary dimensions: toxic or non-toxic, positive or negative, and
constructive or non-constructive. For example, “What’s wrong with you to write such bad code?” is classified as
toxic, whereas “This is bad code” is non-toxic but negative. See Section 3 for details.

4T focus on future code rather than the reviewed code to ensure that the effect is not mechanically driven
by the review process. For example, toxic reviews are more likely to reject the submitted code, which could
mechanically lower its measured quality.

do not reallocate to non-code tasks or move to other teams to avoid toxic reviewers. Instead,
their overall output quantity declines. There is also no evidence of a quality—quantity tradeoff:
the decline in code quantity is not offset by higher code quality. In fact, the quality of new code
falls. Beyond productivity, developers who receive toxic feedback are less likely to stay with
their firm over the next two years based on employment information from LinkedIn profiles.
Because worker knowledge is a core asset and turnover imposes substantial costs (Hoffman and
Tadelis, 2021), these results suggest that reducing toxic feedback tone can strengthen retention.

Since most toxic feedback is also negative, a key question is whether the decline in produc-
tivity stems from toxicity or negativity. This distinction matters for management practice. If
all negative feedback were harmful, managers would need to avoid criticism altogether. I find
that the harm of toxic feedback arises from toxicity, not from expressing dissatisfaction with the
work. After respectful criticism (negative but non-toxic), developers’ code quantity does not
increase significantly, and the decline in code quality is much smaller than after toxic feedback.

Positive feedback, by contrast, increases new code quality by 6.4% without significantly
affecting code quantity. Its benefits extend beyond the individual team. Developers who receive
positive feedback are more likely to send positive messages to coworkers and improve new code
quality for other teams. Thus, positive feedback raises productivity both directly, by increasing
a developer’s own output, and indirectly, through spillovers to coworkers and other teams.
These effects are consistent with behavioral models in which higher self-confidence increases
effort (Compte and Postlewaite, 2004; K&szegi et al., 2022). In terms of retention, developers
who receive positive feedback are also more likely to remain in the same industry over the next
two years, as shown by their LinkedIn employment history. Most benefits of positive feedback
come from positive but not constructive feedback. This implies that motivation driven by tone
rather than informational content increases productivity.

Regarding the informational dimension of feedback, constructive feedback has more nuanced
effects on future productivity. It does not significantly change the amount of new code produced
but lowers its quality. This result is at first surprising, because constructive feedback is usually
viewed as an important channel for learning. One possible explanation lies in the role of
reviewers, who not only provide feedback but also decide whether the code is accepted. When
developers receive detailed or demanding comments, they face a heavier workload revising
previous code, which leaves less time and attention for new work. As a result, the quality
of new output declines even though the amount of new code remains unchanged, revealing a
tradeoff that even well intentioned managers face. Consistent with this mechanism, developers
rewrite 49.2% more lines of old code after receiving constructive feedback, which suggests a
tradeoff between revising old code and developing new code.

Firms invest heavily in recruiting and retaining high-quality managers (e.g., Lucas, 1978;

Bloom et al., 2013; Gabaix and Landier, 2008), but their positive impact can be offset when

others in the team give toxic feedback. I measure manager quality as value-added (VA) to
worker productivity, estimated using the forecast-based approach of Chetty, Friedman, and
Rockoff (2014). Reviewer VA measures how a developer’s productivity changes before and
after being assigned to a reviewer, holding the developer and case characteristics constant.’
Developers assigned to high-VA reviewers produce 53% more code than those reviewed by
low-VA reviewers. However, toxic feedback from a randomly assigned reviewer reduces code
quantity by about 43%, implying that while high-quality managers raise productivity, toxic
feedback in the team can nearly offset these gains.

Finally, 1T assess how much feedback contributes to manager quality. Managers influence
workers through many channels, including monitoring performance, reallocating tasks, and
motivating effort (Weidmann et al., 2025), and feedback is only one of them. I find that
feedback alone accounts for a sizable share of the variation in manager VA. To quantify this, I
train a random forest model using three sets of covariates: feedback quantity, feedback quality,
and selected feedback features. Feedback quantity is measured by the number of messages a
reviewer sends per week, while feedback quality is summarized by text-based features capturing
linguistic characteristics. The model shows that feedback quantity and quality together explain
about 22% of the variation in reviewer VA, whereas reviewer gender and race explain only 0.2%.
Remarkably, a simple model including only feedback quantity and three feedback types—toxic,
positive, and constructive—captures 84 % of the full model’s explanatory power. These results
show that feedback explains a substantial share of manager quality.

This paper shows that feedback does more than transfer information. Managers can use
feedback tone to affect worker productivity and retention, and feedback explains a substantial

share of manager quality in a large, high skill setting that is central to the modern economy.

Related literature. The first is the literature on feedback. A widely used definition in edu-
cation describes feedback as information provided by agents such as teachers, peers, or parents
about aspects of one’s performance (Banihashem et al., 2022; Hattie and Timperley, 2007). In
psychology, feedback is viewed as a form of communication in which a sender conveys infor-
mation about the receiver, and the receiver’s response depends on their traits and how they
interpret both the information and the tone (Ashford and Cummings, 1983; Ilgen et al., 1979;
Kluger and DeNisi, 1996). Recently, economics has begun to study feedback as a channel for
human capital accumulation (Emanuel et al., 2025). A related literature documents gender dif-
ferences in how feedback is given and received. Women tend to interpret negative feedback as

a signal of low ability, while men attribute it to luck (Shastry et al., 2020). Such asymmetries

51 estimate reviewer VA separately from changes in developers’ code quantity and quality and find that
the two measures are positively correlated. I first estimate the reviewer VA in the random assignment sample.
Before extending the analysis to the full sample, I test the validity. I focus on reviewers who work across multiple
teams and appear in both random and nonrandom samples. Their VA rankings closely align, supporting that
the forecast-based estimator remains valid beyond random assignment.

4

contribute to gender gaps in confidence and participation. Other studies show that women
evaluators face stronger resistance to negative feedback (Saygin et al., 2025), and that reduc-
ing public signals of gender-biased feedback increases women’s output and visibility (Freimane,
2024). I extend this literature by providing large-scale causal evidence on how feedback infor-
mation and tone affect worker productivity, generate spillovers, and vary across workers with
different characteristics.

Second, this paper contributes to the literature on performance management. Organizations
traditionally rely on monetary incentives such as wages, bonuses, and promotions to reward
workers’ effort and punish their shirking. Theory predicts that rewards raise the marginal
benefit of effort, while punishments deter shirking (e.g., Holmstrém (1979, 1982); Shapiro and
Stiglitz (1984)). Consistent with these predictions, empirical studies document the effects of
performance pay and promotion incentives on worker performance (Lazear, 2000; Gibbons and
Waldman, 1999), and experiments further show that both rewards and punishments can sustain
cooperation, with punishments more effective (Andreoni et al., 2003). However, monetary in-
centives are costly, constrained by budgets, and limited by the number of available promotions.
Furthermore, pay inequality can be detrimental to morale, productivity, and employee retention
(Card et al., 2012; Dube et al., 2019). Feedback, in contrast, is a low-cost and flexible mecha-~
nism that managers can use frequently and target at specific behaviors. Positive feedback can
motivate effort much like a reward, while toxic feedback can operate as a form of punishment.
Thus, feedback functions as a distinct non-monetary incentive, and this paper provides causal
evidence that such incentives affect worker outcomes.

Third, the paper relates to research showing that emotions and self-confidence shape mo-
tivation and effort. Bénabou and Tirole (2002) model self-confidence as a motivational asset
that individuals preserve through self-deception and selective recall, while Compte and Postle-
waite (2004) show that such biases can improve performance when emotions influence outcomes.
Kdszegi et al. (2022) further demonstrate that self-esteem can be fragile and distort behavior
when success is central to one’s identity. Complementing these theories, models of communi-
cation highlight that messages themselves can shape behavior by influencing beliefs and inter-
pretations (Crawford and Sobel, 1982). My paper provides empirical evidence consistent with
these mechanisms by showing that feedback tone affects workers” motivation and productivity.

The paper also relates to other work that opens the black box of what managers do, includ-
ing Hoffman and Tadelis (2021) on people management skills in a large high-tech firm, Haegele
(2022) on talent hoarding in a large manufacturing firm, and Minni (2024) on how managers
in a consumer goods multinational affect workers through task allocation. I contribute to this
literature in two ways. First, I show that feedback is an important yet previously overlooked
mechanism through which managers affect worker productivity. Second, I use data from glob-

ally distributed firms, moving beyond the single-firm focus of most existing studies. Relatedly,

Bandiera et al. (2020) extend the analysis from a single firm to a random sample of manufac-
turing firms drawn from Orbis, surveying CEOs through detailed diary data and showing that
those who focus on high-level agendas outperform those focus on functional management. In
contrast, I use large-scale observational data to measure managerial activities directly.

Finally, this paper contributes to research on non-wage job amenities and toxic workplace
conditions. Economic studies have examined toxic speech outside the workplace, such as on
social media and online forums (Smirnov et al., 2023; Ederer et al., 2024), and adverse conditions
within firms, including workplace hostility (Collis and Van Effenterre, 2025), sexual harassment
(Folke and Rickne, 2022), and violence (Adams-Prassl et al., 2024). Related work outside
economics, largely based on surveys and qualitative evidence, shows that toxic environments
link to depression, burnout, and absenteeism (Nielsen and Einarsen, 2012; Fattori et al., 2015;
McTernan et al., 2013). I extend this literature by providing evidence on the detrimental effects
of toxic feedback in the workplace.

The rest of the paper is organized as follows. Section 2 describes the data sources and
the context of software development. Section 3 explains the feedback classification. Section 4
presents descriptive evidence on team structure and reviewer characteristics. Section 5 out-
lines the empirical design, and Section 6 presents the main results on how feedback affects

productivity. Section 7 examines reviewer value-added, and Section 8 concludes.

2 Data and Setting

I create a panel dataset by merging three sources: GH Archive (public timelines, activities,
feedback, and team structure), GitHub profiles (names, images, locations), and Revelio Labs
(employment histories). I use the data to (i) characterize reviewer and developer demographics;
(ii) identify reviewer-to-developer feedback messages; and (iii) measure feedback types, devel-
oper productivity, and retention. The panel spans 2017 to 2023 and includes teams that adopt

random reviewer assignment.

2.1 GitHub: World’s Largest Software Coding Platform

GitHub is the largest online coding platform, where developers store code, share projects, and
collaborate. To give a sense of its scale today, as of June 2025, it hosts over 259 million public
repositories and more than 161 million users.® Its estimated global value exceeds 8 trillion USD
(Hoffmann et al., 2024). Technology firms such as Google and Microsoft maintain thousands
of public projects on GitHub. These firms increasingly rely on GitHub for innovation and
productivity (Nagle, 2019).

6See user and repo, accessed 2024-06-29.

https://github.com/search?q=type:user
https://github.com/search?q=is:public

GitHub records the full version history of each file and supports asynchronous collaboration
across time zones and teams. The GH Archive captures all public GitHub activity in near
real-time and preserves event-level traces, even after code is modified or deleted.

To join GitHub, each usermust create a unique username and can publicly display personal
information on the GitHub profile. The GitHub profile usually lists name, profile image, loca-
tion, firm, bio, and email. Many highlight programming skills to attract potential employers,
often providing accurate details and links to LinkedIn profiles or personal websites to signal
credibility and professional identity (El-Komboz and Goldbeck, 2024).

Studying workplaces on GitHub is challenging because millions of volunteers contribute, and
many activities are sporadic. To focus on professional settings, I include only teams owned by
organizations where developers work in teams with defined roles. I exclude individual projects
outside organizational teams to ensure the sample reflects structured workplace collaboration,
not ad hoc or personal coding. Below, I define “team,” “team member,” and “reviewer,” and

then describe the final sample restrictions used in the analysis.

2.1.1 Team

A repository is a workspace where developers store code and track its version history. I de-
fine a team as a repository owned by an organization. In these teams, developers contribute
code, review, and discuss.” I restrict the analysis to organization-affiliated teams for three
reasons. First, they use structured workflows. Second, they align with firm objectives such as
product development or commercialization (Andersen-Gott et al., 2012). Third, they better
represent workplace settings than individual projects, which often reflect personal work. Fig-
ure la illustrates the distinction between organization-affiliated teams included in the sample

and individual projects excluded from the sample.

[Figure 1 about here.]

2.1.2 Team Member

Teams include internal members and outside volunteers. Anyone can comment or submit code
changes, but only internal members hold project-level permissions. I identify internal members
using GitHub’s author association field, available since 2017, which classifies each user as owner,

member, collaborator, contributor, none, or mannequin.

"The concept of a “team” has been defined in various ways in economics. Marschak and Radner (1958) defines
a team as “an organization the members of which have only common interests,” highlighting the alignment of
incentives. Holmstrom (1982) defines a team “rather loosely as a group of individuals who are organized so that
their productive inputs are related,” emphasizing joint production. In more recent work, such as Jones (2021),
teams are observed through patterns of co-authorship in science. Following this definition, I define each GitHub
repository as a team, a group of developers jointly contributing code toward a shared project, much like a group
of researchers co-authoring a paper.

I define a team member as a user labeled owner, member, or collaborator. These roles imply
write-level access and active involvement in development, including pushing code, reviewing
pull requests, managing issues, and coordinating work.®

Because I only observe author association when a user acts, months where no activity occurs
are missing, making it difficult to directly track periods of continuous membership. To address
this, I impute continuous membership between the first and last months in which a user is
observed as a team member. This approach is justified by the rarity of exits and re-entries

within the observed window.

Demographics. [measure developers’ gender, race, and location using information from
their GitHub profiles. Gender is inferred using a deep learning model on profile images, with
predictions below 0.85 confidence being coded as missing. Around 88% of developers are classi-
fied as male. Race is classified from developers’ names using standard name-based methods into
four categories: Asian, White, Black, and Missing. Location is taken from self-reported profile
entries and standardized at the country level. Figure A1 maps the geographic distribution of
team members. The United States has the largest concentration, followed by India, China, and
Brazil, with notable participation also seen in Europe and Southeast Asia. Further details are

provided in Appendix A.

2.1.3 Case, Reviewer, and Feedback

A pull request on GitHub is a formal submission of code changes for integration into a team’s
codebase. I refer to each pull request as a case. Teams often use protected branches that require
code reviews before merging. Submitting a case initiates a structured review process. Code
review is a standard practice in professional teams. It helps identify bugs, enforce conventions,
and maintain quality. °

Reviewers as team members formally listed in the “reviewer” field of the case. They are
responsible for evaluating the code and providing feedback. Although a case may have multiple
reviewers, 80.5% have only one. Developers as the team members who submitted the case on
the same day the feedback was posted. 46.9% of cases have one developer. These definitions
reflect the collaborative nature of software development. Like coauthors responding to referee
reports, developers jointly engage with reviewer feedback to improve the submission.

Reviewer messages are collected from GH Archive, which records all public GitHub events

8 Owner and member are formally affiliated with the organization. Collaborator is an invited contributor
with similar technical access. Users labeled contributor or none are external or occasional participants without
sustained permissions. Mannequin is a placeholder account and is excluded. This measure is preferred to
GitHub’s MemberEvent, which captures only a subset of membership changes.

9In the sample, 17.11% of cases have reviewers. Emanuel et al. (2025) discuss how reviews raise quality and
facilitate learning; job postings at Microsoft and Google explicitly require code review.

https://docs.github.com/en/rest/using-the-rest-api/github-event-types?apiVersion=2022-11-28#memberevent
https://www.indeed.com/viewjob?jk=ec35c99bce4ec06b&from=shareddesktop_copy
https://www.indeed.com/viewjob?jk=427b2b5ea5afdc3b&from=shareddesktop_copy

in real time. Even if a user deletes a message from the GitHub interface, GH Archive preserves
the original text. Figure 1b presents a schematic of feedback exchange within a case. Figure 1c
illustrates an example from the data.

I do not observe formal managerial relationships in the data. Many reviewers also write code
themselves. However, Section 2.5 shows that reviewers are typically senior.!® I further docu-
ment hierarchical feedback patterns within teams. Most teams follow a hierarchical structure:
reviewers provide feedback to others but rarely receive feedback from those developers. These
patterns suggest that reviewers act as de facto middle managers or project leads, coordinating
work and ensuring code quality. Moreover, my results are nearly identical if I restrict to only

very hierarchically structured teams.

2.2 Reviewer Assignment

When a developer submits a case that requires review, GitHub recommends reviewers based
on prior contributions to the affected code. These recommendations rely on ¢it blame, which
tracks the last person to modify each line in the file. Reviewers with recent contributions are
more likely to understand the context and catch errors. The developer can select a reviewer by

clicking “Request” next to a suggested name. They can also type in a team member’s username.

2.2.1 Random Reviewer Assignment

In teams that handle many cases, review workloads often become uneven, which can reduce
efficiency and slow collaboration. To address this problem, some teams adopt random reviewer
assignment tools. These tools balance workloads by rotating reviewers based on recent ac-
tivity.!* As one developer explained: “Many development teams struggle with uneven review
distribution. A tool that assigns pull-request reviews according to each member’s recent activity
could help balance the load” (see Figure B1).

GitHub does not provide random reviewer assignment by default. However, teams can
implement it using GitHub Actions and configuration files such as reviewer-lottery.yml,
assign-reviewers.yml, or CODEOWNERS. These files specify eligible reviewers and rotation rules.
When a case is opened, the Action reads the configuration and assigns a reviewer according to
past workloads. Table B1 summarizes the functions of these files, and Figure B2 illustrates two
scenarios: one with the random assignment and one with manual selection through “git blame”.

Under random reviewer assignment, the match between submitters and reviewers is plausibly

exogenous. Allocation depends solely on recent workloads rather than case content or submitter

10Based on the matched GitHub-LinkedIn sample, reviewers often hold titles such as “Principal Software
Engineer” or “Senior Software Engineer”.
1 Gee discussion, accessed 2025-01-31.

https://github.com/pullreminders/backlog/issues/101

identity. In Consistent with this, the persistence of reviewer—developer matches is markedly low.
Conditional on a developer having been reviewed by a given reviewer, the probability of being
reviewed by the same reviewer in the following case is 7.32%. Section B details the assignment
rules and compares teams that adopt this system with those that do not. In Section 5.1, I show

that this assignment is uncorrelated with case and developer characteristics.

2.3 LinkedIn Profiles Data

To measure career outcomes, I link developers to employment histories from Revelio Labs.
Revelio compiles information from LinkedIn and other public sources, producing a panel of
1.25 billion professional profiles worldwide. The data record job histories with start and end
dates for each firm-position spell as of August 2024.'2 Appendix E details the GitHub-LinkedIn
matching procedure.

I use these data to construct measures of career transitions. I define a firm switch as a move
to a new employer, regardless of industry. I define an industry exit as a transition to a firm in
a different two-digit NAICS sector.

2.4 Developer Productivity Measures

I measure developer productivity along two dimensions: code quantity and code quality. Code
quantity is the number of lines added to the team’s codebase. Code quality is measured using
the code acceptance rate and case correctness rate. I also track non-code output to capture

potential task reallocation in response to different types of feedback.

Code Quantity. The main output variable for code quantity is the lines of code a developer
submits to a team each week. I also calculate the number of rewritten lines to capture revisions
to old code. Details are in Appendix A.4. While more lines of code do not necessarily indicate
higher productivity, line counts remain a standard proxy for productivity in the literature (e.g.,
Vasilescu et al., 2015; Wagner and Ruhe, 2018; Emanuel et al., 2025).

Non-Code Quantity. [measure a developer’s non-code quantity every week as the number
of non-code GitHub activities, such as participating in issue threads, answering questions, or

providing troubleshooting support.

Quality. I measure output quality using two indicators. The first is the code quality,

defined as the fraction of initially submitted lines that are accepted and retained in the team

12A random sample of 1,000 developers shows that 71.2% have LinkedIn profiles, and 97% of these are also
in the Revelio Labs.

10

codebase. A higher value implies that the original code required fewer edits and reflects greater
accuracy of the first submission (McIntosh et al., 2016; Emanuel et al., 2025). The second is the
case quality, defined as the share of cases whose initial submission is merged into the team’s
main codebase. A higher rate indicates that developers’ work meets review standards without
major revisions. Appendix A.5 provides definitions and examples. Figure F4 shows a positive
correlation between the” number of developers ’ followers on GitHub and both quality measures.
The number of followers on GitHub is a signal of influence and professional reputation. This

positive association supports the validity of the quality metrics.

2.5 Sample Restriction and Summary Statistics

After defining teams, members, and reviewers, I apply restrictions to ensure the sample captures
structured workplace collaboration, not ad hoc activity. First, I restrict attention to teams
under organizations. I exclude projects operated by individual users, as organizational teams
are more likely to reflect workplace-like environments. Second, I retain only code submissions
made by formal team members. Such members contribute more regularly. Third, I focus on
cases with at least one reviewer.

I construct two samples. The full sample includes all teams that satisfy these restrictions be-
tween 2017 and 2023. It covers 1,774,184 teams and 56,637,966 cases, which together generated
more than 231,293,881 feedback messages.

The random reviewer sample includes 3,457 teams. Although this is a small fraction of
the 1.7 million teams in total, these teams are highly active, accounting for 7% of all cases
(4,228,687) and 11% of all feedback messages (24,453,479). They also tend to belong to leading
technology firms. Table B2 reports the number and share of teams in major firms that adopt
GitHub’s random reviewer feature.

Teams using random reviewer assignment are, on average, 20 times larger than those in the
full sample. Their members are less likely to be in the same geographic area. Most feedback
occurs online rather than in person. This sample, therefore, captures a particularly relevant
subset of teams that drive innovation and growth. It also provides higher internal validity, since

offline feedback channels are less likely to operate at the same time.

Comparing Random Reviewer Adopting Teams with Non-Adopters. Table 1 shows
that teams adopting random reviewer assignment are systematically larger and handle far
greater review volumes. On average, they generate 7073.61 feedback messages, over 50 times
as many as other teams. They have nearly 20 members and process 1223.22 cases, over 50
times the number in other teams. These patterns suggest that adoption is concentrated in

large teams with substantial review workloads, where coordination challenges are greatest, and

11

random assignment helps distribute reviews more evenly.

[Table 1 about here.]

Comparing Reviewers and Developers. Within the random reviewer sample, I compare
reviewers and developers along five dimensions: gender, race, platform reputation, experience,
and activity. Figure F3 shows that reviewers are more likely to be male (89% vs. 86%)
and less likely to be Asian (16% vs. 21%). They have greater platform visibility, averaging
133 followers compared with 83 for developers. They are also more experienced and active,
recording an average of 1,844 yearly activities compared with 668 for developers. Overall,
reviewers tend to be drawn from more experienced and prominent contributors. LinkedIn job
titles for matched GitHub-LinkedIn profiles confirm this pattern: reviewers cluster in senior
roles with Senior Software Engineer being the most common, followed by Staff and Principal
positions. Developers, in contrast, are concentrated in more junior roles such as Software
Engineer and Intern.

I then turn to developers’ outcomes, summarized in Table 2. Productivity is measured
along three dimensions: code output, code quality, and non-code activities. Because output
distributions are heavy-tailed, with bursts of submissions or large rewrites after major changes,
I winsorize all continuous variables at the 95th percentile while keeping bounded outcomes such
as case correctness and code acceptance rates unchanged.

Table 2 further distinguishes between the “Focal Team,” defined as the team where the
developer received reviewer feedback on a specific case in a given week, and “Other Teams,”

which aggregates the developer’s activity across all other teams in the same week.

[Table 2 about here.]

3 Feedback Classification

This section analyzes reviewer feedback using large language models (BERT-based models and
GPT). Manual classification of text is difficult to scale because it is labor intensive and inconsis-
tent across raters, making it unreliable for studying millions of feedback messages. I therefore
use a model-based approach to classify feedback systematically based on linguistic features and
validate the results with human annotation.

Feedback is multidimensional and can be interpreted from various perspectives, particularly
with the flexibility offered by LLMs. Before focusing on the tone and information dimensions,
I first provide a broad overview of feedback patterns in the data. I apply principal component
analysis (PCA) to the complete corpus of reviewer feedback. Unlike supervised approaches

that depend on predefined labels, PCA uncovers the main axes of variation directly from the

12

text. The analysis reveals two dominant dimensions: positivity (for example, good, thank) and
constructiveness (for example, add, test), as shown in Figure C1. Toxicity does not appear
among the main components because toxic feedback is much less common on public platforms.
Still, it remains important to study because toxic feedback can have strong policy implications

and has been linked to lower well-being in previous research Nielsen and Einarsen (2012).

3.1 Pre-processing

To ensure reliable measurement, I first clean and standardize the text by removing quoted blocks
from other users’ messages to prevent misattribution, as well as code snippets. Next, I replace
commonly used acronyms in software engineering, such as “lgtm” (look good to me) and “kiss”
(keep it simple);, with their full forms. I then account for software-specific terminology that
might be misclassified in general English, noting that words like “kill,” “trash,” and “dump”
may refer to legitimate coding operations but are often flagged as toxic in general-purpose
models (Sarker et al., 2020).

3.2 Toxic Feedback

The first dimension is toxicity. It captures whether feedback is intentional harm. The Cam-
bridge Dictionary defines “toxic” as “very unpleasant or unacceptable, causing you a lot of harm
and unhappiness over a long period.” Toxicity within reviewer feedback is classified using the
ToxiGen-RoBERTa model (Hartvigsen et al., 2022). Compared to keyword-based classifiers,
ToxiGen is capable of detecting both explicit and implicit forms of toxicity. In this model, tox-
icity refers to the intentional harm (offensive or rude humor, insult, personal attacks, profanity,
aggression, sexual harassment, and discrimination). This definition follows the guidelines used
in human annotation, as illustrated in Figure C2, which shows the evaluation form used in the
ToxiGen dataset. The model, a fine-tuned checkpoint of RoBERTa (Liu et al., 2019), achieves
94.5% accuracy and has been applied in economics (Ederer et al., 2024) and in workplace
contexts, for example, by Microsoft to classify harmful communication.'?

ToxiGen specifically distinguishes between blunt critique and personal attack. For example,
“This is bad code” is classified as non-toxic (probability: 0.918). When a suggestion is added,
as in “This is bad code. You can improve it by adding a loop”, the confidence rises to 0.988.
Similarly, “Your paper is not of general interest to publish at QJE” is labeled non-toxic (0.999).

In contrast, feedback targeting the individual is flagged as toxic. For example, “what’s wrong
with you to write such bad code?” is toxic (0.712). Implicit attacks, such as “Reject. We can

learn nothing from your paper” (0.674) or “You’ll never survive the job market with work like

13See https://www.microsoft.com/en-us/research/publication/toxigen, accessed 2025-10-14.

13

https://dictionary.cambridge.org/dictionary/english/toxic
https://www.microsoft.com/en-us/research/publication/toxigen-a-large-scale-machine-generated-dataset-for-adversarial-and-implicit-hate-speech-detection/
https://www.microsoft.com/en-us/research/publication/toxigen

this” (0.986), are also classified as toxic. Finally, discriminatory content such as “Women are
just not good at coding” is flagged with high confidence (0.988). Figure F23 shows examples of

toxic feedback and replies. Below are selected examples with ToxiGen-predicted toxicity scores:
1. This is bad code — non-toxic, probability: 0.918
2. Your paper is not of general interest to publish at ()JE — non-toxic, probability: 0.999
3. What’s wrong with you to write such bad code? — toxic, probability: 0.712
4. Women are just not good at coding — toxic, probability: 0.988
5. Reject. We can learn nothing from your paper — toxic, probability: 0.674

6. You’'ll never survive the job market with work like this — toxic, probability: 0.986

3.3 Positive Feedback

The second dimension is positivity. It captures whether feedback conveys a supportive or
discouraging tone. I measure it using SIEBERT, a sentiment model trained on 12 million labeled
documents (Hartmann et al., 2023). Compared with dictionary-based methods, SIEBERT is
substantially more accurate across diverse domains and has used in economics (Brynjolfsson
et al., 2025). The model classifies “This is bad code” as negative (0.999), and “Look good to
me” as positive (0.996).

3.4 Constructive Feedback

The third dimension is constructiveness. It captures whether feedback provides specific and
actionable information. The Cambridge Dictionary defines “constructive” as “advice, criticism,
or actions that are useful and intended to help or improve something.” Applying this definition
in practice is difficult because judgments vary. For example, “you can do it in a better way”
may seem constructive to some but vague or unhelpful to others. Prior work, such as Kolhatkar
et al. (2020), labels constructive comments as “high-quality comments that contribute to the
conversation.” But this evidence comes from news discussions rather than technical platforms
like GitHub, where feedback is shorter and highly specialized.

Detecting constructiveness requires reasoning beyond surface features of input text. Embedding-
based models such as BERT!* work well for toxicity and sentiment, where tone and word choice
are decisive. Constructiveness, by contrast, depends on intent, technical content, and how sug-

gestions affect the underlying code. For instance, judging whether “consider adding a loop” is

14 An embedding is a numerical representation of text in a high-dimensional vector space, where semantically
similar words or phrases are located close to each other.

14

https://dictionary.cambridge.org/dictionary/english/constructive

constructive requires understanding the code’s implementation. Input embeddings cannot cap-
ture this reasoning. GPT, trained on large and diverse corpora, can integrate broader context
and domain knowledge. This makes them well-suited to this task.

I briefly outline the procedure here. Details are in Appendix C.2. Each feedback message is
paired with the corresponding code submission. The model is prompted to assess whether the
feedback provides specific and actionable information with a score from 0 (least constructive)
to 10 (most constructive). To refine prompts and select the best model, I compare four OpenAl
LLMs: GPT 4.1 nano, GPT 40 mini, GPT 4o, and GPT 03, against human labels. These
labels are produced by a computer science master’s student and verified by a software engineer.
I then apply the best-performing model to the random reviewer sample. Using a threshold of 4
to define constructive feedback yields 90% classification accuracy. Table C2 provides examples.

The following examples illustrate the scoring:
1. Agree — Non-constructive, score: 0
2. This is not clear — Non-constructive, score: 1

3. I don’t think all introspector errors are reported in the domain status. We need to make

sure that all severe jrf ones are — Constructive, score: 4

3.5 Classification Results

Table 1, Panel C, compares classification results across the Full Sample and the Random Re-
viewer Sample.’® The two samples yield similar patterns: about 0.21% of feedback is toxic,
roughly 40% is positive, and less than 35% is constructive. Figure 2a illustrates these shares

for the Random Reviewer Sample.
[Figure 2 about here.]

To show how these labels are assigned, Figure F22 plots the distributions of predicted scores.
Panel (a) presents toxicity probabilities, which cluster between 0.8 and 1.0. This suggests that
ToxiGen flags toxic feedback with high probability. Panel (c) plots the LLM’s constructiveness
scores. Manual validation confirms the accuracy of this measure. Research assistants labeled a
subsample and achieved 90% agreement with the model’s binary constructiveness classification
shown in Panel (d). Panel (d) applies the threshold of 4 used in the main analysis, and the

results are robust to using 3 as a cutoff.

15Tn the Random Reviewer Sample, all feedback messages are classified. In the Full Sample, toxicity and
positivity are measured on all messages. Constructiveness is evaluated on a subsample due to budget constraints.
Unless otherwise noted, classification results refer to the Random Reviewer Sample.

15

Table 3 cross-classifies feedback by three dimensions. The largest group is non-toxic, nega-
tive, and non-constructive (38.5%). An example is “This is not clear.” Toxic feedback is over-
whelmingly negative and non-constructive (85%), such as “You are talking nonsense.” Positive
feedback is often non-constructive (76%), usually short affirmations like “Looks good to me.”
Finally, most constructive feedback is non-toxic and negative (70%). For example, “Still feels
redundant. An angle should just be a union of float and FreeParameter. Once the parameter is

bound, you have a new circuit with no free parameters.”.

[Table 3 about here.]

4 Descriptive Facts

This section presents three descriptive facts about code review that motivate the empirical strat-
egy. They highlight who drives variation in feedback dimensions, how feedback is distributed

across reviewers and how feedback is structured within teams.

Fact 1: Reviewers Explain Most of the Variation in Feedback Dimensions. To iden-
tify the sources of variation in feedback tone and information, I regress predicted feedback scores
at the developer—team—week level (continuous measures of toxicity, positivity, and constructive-
ness) on fixed effects for teams, reviewers, developers, and case-level controls. Figure 7?7 shows
that reviewer fixed effects explain the largest share of variation across all three dimensions. In
contrast, team fixed effects account for much less, and developer fixed effects or case character-
istics add little explanatory power. These results indicate that variation in feedback primarily
reflects reviewer feedback styles rather than differences in team culture, developer traits, or

case context.

Fact 2: Feedback Provision is Highly Concentrated. I further examine the distribution
of feedback provision and find that it is highly concentrated (Figure F24). A small group of
reviewers contributes a disproportionate share of messages in each dimension. The top 5%
contribute 60.2% of toxic feedback, 33.8% of positive feedback, and 35.5% of constructive
feedback. This concentration highlights substantial heterogeneity among reviewers in their

feedback styles. It provides meaningful variation for the empirical analysis.

Fact 3: Most Teams Follow a Hierarchical Feedback Structure. I measure the hierar-
chy of a team using the direction of feedback exchanges. A fully hierarchical team has feedback
flowing only in one direction, similar to a workplace where managers review juniors but not vice

versa. In contrast, reciprocal feedback, where two members review each other’s code, indicates

16

a more egalitarian structure. I define the hierarchy score as:

2R
Hierarchy Score =1 — =

where R is the number of reciprocal pairs and F is the total number of feedback messages.
Each reciprocal pair refers to two members who have reviewed each other at least once, and
multiplying R by 2 converts that count into the maximum possible number of messages ex-
changed within reciprocated relationships. A score of 1 indicates purely one way feedback
(fully hierarchical), while values near 0 reflect frequent reciprocity.

Figure 3 shows the distribution of hierarchy scores for teams of size five. Most teams exhibit
a hierarchical structure. This means that code reviews tend to flow in one direction rather than
occurring between peers. The figure also presents three team feedback networks that illustrate
low, medium, and high hierarchy levels. Figure F17 shows that this pattern holds across all

teams: in most cases, reviewers specialize in reviewing and do not contribute code themselves.
[Figure 3 about here.]

Taken together, these facts guide the empirical strategy. Feedback tone and information vary
primarily across reviewers, not across teams or developers. Feedback provision is concentrated
among a small group of reviewers. This combination implies that variation in feedback tone
and information, which stems from reviewer styles, generates meaningful differences. I exploit

this variation to identify their effects on worker productivity.

5 Empirical Strategy

I estimate how different types of feedback affect developers’ future productivity. To illustrate
the empirical strategy, I begin with toxic feedback as an example; the same framework applies
to the other types.

Consider the following model, where ¢ indexes calendar weeks when feedback is given:

Yim, [t4+1,644] = 5lgﬁ)§ic + I Xt + Ymyear(t) + Eimyts (1)

where Y, 141,+4] is the productivity of developer ¢ in team m during weeks t +1 to t +4 (e.g.,
code quantity or quality). The indicator IiT;l’f?C equals 1 if developer ¢ received toxic feedback in
team m during week ¢, and 0 if the feedback was non-toxic. The vector X;; controls for feedback
volume and activity level (measured in deciles) in week ¢ — 1. T also include team-by-year fixed

effects fymyear(t).m The coefficient 3 captures the effect of receiving toxic feedback in week t.

6Following the judge leniency literature, I condition on the block where assignment is as good as random

17

The main challenge is that OLS estimates of (1) may be biased if the receipt of toxic feed-
back correlates with unobserved factors that also affect outcomes. This bias could be positive
or negative. On the one hand, developers with lower latent ability may be less productive and
more likely to receive toxic feedback. Conversely, developers with fewer outside options may
interpret toxic feedback as job dissatisfaction and respond by increasing their effort, fearing dis-
missal. Toxic feedback may also concentrate at specific stages of the project cycle, such as early
development, when goals are less defined and productivity more volatile. These unobserved
factors complicate identification and can distort OLS estimates in either direction.

The as-if random assignment of developer cases to reviewers (conditional on team-by-year
fixed effects) provides variation in toxic feedback. This variation is independent of developer
or case characteristics. If reviewers differ systematically in their feedback styles, some are
toxic than others. This reviewer feedback style generates variation in developers’ exposure to
toxic feedback. As a result, the likelihood that a developer receives toxic feedback varies with
reviewer assignment, and this variation is independent of the content of the case itself. 17

To instrument for receiving toxic feedback, I construct a leave-developer-out measure of
reviewer toxicity. This follows the judge or officer designs in Dobbie and Song (2015); Dobbie
et al. (2017, 2018); Bhuller et al. (2020). Reviewers and developers may interact repeatedly, so
a simple leave-one-case-out measure risks bias if the same pair appears elsewhere. I therefore
exclude all cases involving the focal developer when computing a reviewer’s toxicity rate. Con-
cretely, the instrument is the average share of toxic feedback the reviewer gives in cases with
other developers. This procedure ensures that the instrument is not mechanically correlated
with the focal developer’s outcomes.

Z;F(‘Z?;‘ic is the leave-developer-out mean measures of toxic feedback for each reviewer j:

Toxic __ 1

To —_ DToxic
i) 2hti Thj hofs

hj

where D,fj‘?"ic is the number of toxic cases reviewer j gives to developer h, and ny; is the total
number of cases reviewer j reviews for developer h.

The main analysis will be based on 2SLS estimates of the second-stage equation (1) and the

and include block fixed effects. Identification comes from within block comparisons (Dobbie and Song, 2015;
Dobbie et al., 2017; Bhuller et al., 2020; Beuschlein, 2024). In our data, reviewer assignment primarily occurs
within team-by-year cells. The average reviewer tenure on a team is 1.12 years. I therefore include team-by-year
fixed effects. Results are robust to team-by-month fixed effects.

1"The same logic applies to positive and constructive feedback. Some reviewers are systematically more
positive (Figure F24b) or more constructive (Figure F24c). Consequently, the probability that a developer
receives a given feedback type depends on the tendencies of the assigned reviewer. I exploit this reviewer-driven
variation as the basis for an instrumental variables strategy to identify the causal effects of feedback types.

18

first-stage for developer ¢ and reviewer j at event time t is given by:

[;;L)?C = OJZjT(%{iC + 0 Xt + Vmyear(t) T Eimits (2)
where the scalar variable Z;F(%‘ic denotes the toxicity of reviewer j assigned to developer ¢, and «
represents the impact of reviewer toxicity on the likelihood of receiving toxic feedback. Robust
standard errors are clustered at the reviewer level in both stages.'® I report the robust first-stage
F-statistic, which is large in our setting (Staiger and Stock, 1994; Lee et al., 2022).

I interpret the 2SLS estimates within the Local Average Treatment Effect (LATE) frame-
work (Angrist and Imbens, 1994). Under the assumptions of instrument exogeneity and mono-
tonicity, the instrument recovers the local causal effect of receiving toxic feedback among the
subgroup of developers whose likelihood of exposure varies with the assigned reviewer. Exo-
geneity means that reviewer assignment affects developer outcomes only through its impact on
targeted feedback type and not through other channels. Monotonicity implies that the instru-
ment affects treatment in only one direction. I provide evidence on the exclusion restriction

and monotonicity tests in Section 5.1.

5.1 Assessing the Instrument

Instrument Relevance. Figure 4 provides a graphical representation of the first stage. It
shows reviewer-level feedback propensities after residualizing team-by-year fixed effects. To
reduce measurement error, I only include teams with at least 2 reviewers and reviewers who
have handled at least 10 cases. This selection leaves 480,697 cases and 10,873 reviewers, with an
average of 44.2 cases per reviewer. All three panels reveal substantial cross-reviewer variation
in the likelihood of sending toxic, positive, or constructive feedback.

Panel (a) in Figure 4 shows that residualized reviewer toxicity. Moving from the 10th to
the 90th percentile increases the probability of receiving toxic feedback by 0.2 pp. This is a
26.7% increase relative to the mean toxic feedback rate of 0.76%. For positivity in Panel (b),
the shift from the 10th percentile (—0.15) to the 90th percentile (0.16) raises the probability
of positive feedback by 31 pp. This represents a 43.9% increase from the mean rate of 70.6%.

18] cluster standard errors at the reviewer level because misclassification in feedback detection is likely corre-
lated within reviewers. Each reviewer evaluates many pull requests, which induces within-reviewer correlation
in the errors. Clustering at the reviewer level addresses this dependence and yields a valid inference. As a
robustness check, Figure F5 reports results with team-level clustering; the estimates are similar.

19 Assessing the risk of many-weak-instrument bias in judge-style designs remains an open question (Hull,
2017; Frandsen et al., 2023; Bhuller et al., 2020; Agan et al., 2023). In Table D1, I evaluate the robustness of
the leave-developer-out reviewer leniency instrument using alternative IV estimators. These include: (i) limited
information maximum likelihood (LIML) with all reviewer dummies as instruments; (ii) the modified bias-
corrected two-stage least squares (MBTSLS) estimator of Kolesér et al. (2015); and (iii) the unbiased jackknife
instrumental variable estimator (UJIVE) of Kolesar (2013). The estimates are quite stable.

19

For constructiveness, moving from the 10th percentile (—0.21) to the 90th percentile (0.20)
increases the likelihood of constructive feedback by 41 pp. This is a 79.2% increase over the

mean rate of 51.8%.
[Figure 4 about here.]

Table 4 presents first-stage estimates from regressions of indicator variables for receiving
each feedback type (toxic, positive, or constructive) on the corresponding reviewer instrument,
defined as the individual reviewer’s residualized rate of providing the respective feedback type.
Column (1) includes team fixed effects, Column (2) replaces these with team-by-year fixed
effects, and Column (3) adds controls including developer gender, race, GitHub activity in the
year before submission, the first year of GitHub activity, case characteristics, and project stage,
defined based on the release version of the team product (See Appendix A.6). Standard errors
are clustered at the reviewer level.

Building on these estimates, the coefficients are large and statistically significant across
all panels. In Panel (a), a 10 pp increase in a reviewer’s residualized toxicity rate raises the
probability of receiving toxic feedback by roughly 7 pp. Panel (b) shows a comparable effect
for positive feedback (8.2 pp), while Panel (c) reports a slightly larger effect for constructive
feedback (8.6 pp).

[Table 4 about here.]

Conditional Independence. A valid instrument must be uncorrelated with developer and
case characteristics that influence outcomes. Column (3) of Table 4 adds controls for these
predetermined variables to the first-stage regressions. If reviewer assignment is random, the
coefficients should remain stable, which is exactly what I find.

As a second test, Figure 5 assesses the randomness of case assignment after controlling for
team-by-year fixed effects. In Panel (a), the blue lines with red markers plot coefficients from
regressions of reviewer toxicity on standardized developer and case characteristics. None of
the coeflicients is statistically significant. Similar patterns hold for positive and constructive
feedback in Panels (b) and (c). Taken together, these findings provide strong evidence that

reviewer assignment is conditionally random.

[Figure 5 about here.]

Exclusion Restriction. Conditional random assignment of cases to reviewers is sufficient
to interpret reduced-form effects of reviewer feedback as causal. Interpreting the IV estimates
as causal effects of specific feedback types requires the stronger exclusion restriction: feedback

must affect developer outcomes only through its designated dimension and not through others.

20

However, a challenge arises because feedback is multidimensional. A single feedback message
may contain several attributes. As Panel A in Table 3 shows, most toxic feedback is also
negative. This overlap raises an identification concern: the reviewer’s toxicity instrument may
also affect the likelihood of receiving negative feedback, creating an additional channel through
which the instrument influences outcomes. Hence, the IV estimates could capture the combined
effect of toxicity and negativity rather than isolating toxicity alone.

I return to this issue after presenting the main results in Section 6.5. There, I show that
the estimates are robust to augmenting the baseline model with controls for other reviewer

characteristics or by including instruments for alternative feedback dimensions.

Monotonicity Condition. If the causal effect of reviewer feedback were homogeneous across
developers, the instrument would need to satisfy only conditional independence and the exclu-
sion restriction. Under heterogeneous treatment effects, recovering the LATE also requires
monotonicity—that the instrument affects the probability of receiving a specific type of feed-
back in only one direction across developers. This assumption implies that developers who
would not receive toxic feedback from more toxic reviewers would also not receive toxic feed-
back from less toxic reviewers.

I cannot directly test this assumption, but I can use several indirect tests common in the
literature. Following Bhuller et al. (2020) and Beuschlein (2024), I test monotonicity by checking
that first-stage estimates are nonnegative for all subsamples. I split the data by gender, race,
activity level, GitHub experience, and follower count (as a proxy for reputation), then re-
estimate the first stage for each group. Appendix Table F1 reports the results. Across all
splits, the first-stage estimates are positive and statistically different from zero, consistent with

the monotonicity assumption.

6 Effects of Feedback on Developer Productivity

This section presents the main results. First, reviewer feedback has a significant impact on
subsequent productivity, affecting both the quantity and quality of code. Second, these effects
persist over time, affecting developer retention within firms and across the industry. Third,

feedback creates spillovers, affecting contributions across teams and coworker communication.

6.1 Main Results

Figure 6 presents 2SLS estimates of the effect of reviewer feedback on developer productivity
within a team over the four weeks following a review. To avoid contamination from the review

itself, I exclude the current code being reviewed and focus only on new code produced after-

21

wards. Code quantity is decomposed into two components: the extensive margin, indicating
whether a developer contributes any code, and the intensive margin, measuring lines of code
written conditional on contribution. Code lines include all cases initiated within four weeks
after receiving reviewer feedback (see Appendix A.4). Figure 8 summarizes the main results

across all three feedback types.

Effects of Toxic Feedback on Productivity. Figure 6a shows that toxic feedback reduces
developers’ participation by 7%. It also lowers code quantity by 56 log points (43%). Thus,
developers are less likely to code. When they code, they produce less.

One possible response to toxic feedback is task substitution: developers may avoid further
toxic interactions by shifting from coding to non-code tasks such as answering questions. The
estimates, however, show no significant effects on either the extensive or intensive margins of
non-code quantity. This rules out substitution. It indicates that toxic feedback lowers overall
output rather than redirecting effort toward other activities.

Another hypothesis is that developers respond by producing less but higher-quality code.
However, the results do not support this hypothesis. In fact, toxic feedback reduces code
quality, as shown by declines in both the share of corrected cases and the share of accepted
code. The share of code submitted and accepted in the team code-base decreases by 9.1 pp
(13.13%). This suggests that toxic feedback not only reduces how much developers produce
but also discourages careful and accurate coding.

A possible alternative explanation for the effect of toxic feedback on developer productivity
is that reviewers who provide such feedback affect future task allocation. If reviewers who
leave toxic feedback are also less likely to assign work to the same developer again, the drop in
output could reflect assignment decisions rather than voluntary adjustment. Figure F21b rules
this out. The number of cases assigned to a developer is unaffected, suggesting that observed

declines reflect behavioral responses by the developer, not reallocation by the reviewer.

[Figure 6 about here.]

Toxic or Negative? Most toxic feedback is negative (85.7%). This raises a key question:
are the detrimental effects driven by toxicity itself, or by negativity? Figure 6b shows the effect
on developer productivity when receiving respectful criticisms (non-toxic but negative). While
toxicity demotivates, respectful criticism feedback does not. In fact, developers rewrite more
lines of code, with only modest quality costs. Toxic feedback harms not because it expresses

dissatisfaction, but because it crosses into abuse.

Effects of Positive Feedback on Productivity. Having documented the negative effects

of toxic feedback, I now turn to positive feedback. As shown in Figure 6¢, positive feedback

22

improves new code quality without slowing quantity. The share of accepted code rises by 4.4
pp (6.35%), indicating that developers maintain their usual pace but devote more effort to
accuracy when they feel appreciated.

These findings align with theoretical models of confidence and performance. For example,
Compte and Postlewaite (2004) formalize how positive affect and selective recall of successes
sustain effort and productivity. Similarly, Bénabou and Tirole (2002) and Ké&szegi et al. (2022)
emphasize the central role of self-confidence: positive feedback reinforces beliefs about ability

and raises effort, while toxic feedback can undermine these beliefs and reduce productivity.

Effects of Constructive Feedback on Productivity. By contrast, constructive feedback
has less favorable effects on future productivity. As Figure 6d shows, developers write a similar
amount of code in new cases, yet output quality declines: the share of accepted code decreases
by 10.39%. Constructive feedback provides actionable information and is often viewed as a
form of on-the-job training that builds task-specific human capital. If developers absorb and
generalize this feedback, future performance should improve. Instead, the evidence suggests that
developers apply the information in the current task but do not carry the lessons forward.?°

Two mechanisms may explain this pattern. First, the benefits of feedback may accumulate
gradually, and may not translate into immediate gains in output quality (Gibbons and Wald-
man, 2004). Second, developers may face cognitive constraints: they prioritize meeting present
demands over integrating lessons into future work (Kahneman, 1973).

Supporting this hypothesis, Figure 8a shows that developers rewrite 49.18% more lines after
receiving constructive feedback. Developers shift effort and attention toward revising old code,
leaving less time for careful work on new code. This suggests a trade-off between revising old
code and developing new code (Figure 8a).

These results highlight the negative externality in constructive feedback. Reviewers may
not internalize the cost of being overly detailed or even picky. Specific information can force
developers to make revisions that satisfy the reviewer but add little to overall quality. Because
reviewers do not bear the opportunity cost of developer time, their feedback can inadvertently
reduce efficiency. The outcome resembles the dynamics of academic refereeing: excessively
picky reports may generate rounds of revision that improve the submitted version but slow

down the production of new and potentially more innovative work.

Long-Run Retention Outcomes. So far, the analysis has focused on productivity. Fig-
ure 8b suggest longer-run effects on career trajectories, such as whether developers leave their

firm or the tech industry two years after receiving feedback. To study these outcomes, I link

20Figure F18 reports results using an alternative threshold (> 3) to define constructive feedback. The findings
remain similar.

23

GitHub activity to LinkedIn profiles (Appendix E), using a conservative matching strategy and
manually validating 10% of the links. Preliminary estimates show that exposure to toxic feed-
back increases the probability of leaving the firm by 33 pp, while positive feedback reduces the
probability of industry exit by 7 pp. These patterns are consistent with Hoffman and Tadelis
(2021), who document that managers with stronger people-management skills achieve higher
employee retention.?!

Toxic and positive feedback significantly affect developers’ likelihood of leaving their firm and
the industry, indicating that feedback tone is a micro-level channel through which managerial
style and workplace culture influence labor supply in knowledge-intensive sectors. Because
employee knowledge is a core asset and turnover represents a major loss, high-tech firms invest
heavily in predicting and reducing attrition (Hoffman and Tadelis, 2021). These findings suggest
that improving feedback practices can effectively strengthen retention and preserve human

capital in knowledge-intensive firms.

Joint Effects of Feedback Tone and Information. Having shown the effects of each
feedback dimension separately, I next examine the joint effect of feedback tone and information.
Figure 7 reports the effects on developer productivity. I distinguish between appreciation alone
(pink) and appreciation combined with specific and actionable information (teal). The largest

gains come from simple appreciation: both code quantity and quality increase.

[Figure 7 about here.]

6.2 Spillover Effects

Spillovers Within Teams? Having shown that feedback affects developer productivity, I
next test for spillover effects on coworkers within the same team. Panel (c1) of Figure 8 shows
that developers who receive positive feedback subsequently send a higher share of positive
messages to their coworkers. This result suggests that feedback generates within-team spillovers

and can affect the team communication environment.

Substitution to Other Teams? Beyond within-team spillovers, feedback may also have
effects across teams. Two channels are possible. First, feedback may alter developers’ overall
engagement, leading them to contribute more or less across the platform; in this case, effects
should move in the same direction as those within the focal team. Second, feedback may induce
substitution, whereby developers reduce output in one team but increase it elsewhere; in this

case, effects would move in the opposite direction. Distinguishing between disengagement and

2'Hoffman and Tadelis (2021) measure management skills using six survey items, including two directly
related to feedback: “communicates clear expectations” and “provides continuous coaching.”

24

reallocation is therefore central to understanding whether feedback changes total output or
merely shifts activity across teams.

Panel (c2) of Figure 8 shows that positive feedback generates cross-team spillover, increasing
code quality in other teams by 5.8%. In contrast, constructive feedback reduces both code
quality measures. This pattern is consistent with a trade-off between revising old code and
developing new code: when developers receive detailed or demanding feedback, they must
devote more time to reworking old code, leaving less time to contribute to other teams.

Figure F20 shows no significant change in developers’ code quantity or non-code quantity
in other teams after receiving feedback in their focal team.

Overall, positive feedback not only increases developers’ own productivity but also leads
them to send more positive messages to their coworkers, fostering a better team environment

and generating productivity gains across the platform.

[Figure 8 about here.]

6.3 Comparison to OLS

Table 5 compares the OLS and IV estimates. The OLS results are from equation (1). Panel A
shows that OLS suggests developers who receive toxic feedback are more productive: code
output rises by 6.72% and non-code activity by 8.33%, though code quality declines. The IV
estimates reverse this narrative. Toxic feedback reduces output on all margins: code quantity
falls by 42.88% and output code by 13.13%. The difference underscores the endogeneity in OLS.
First, more productive developers both produce more output and receive more reviews, which
increases their likelihood of receiving feedback, including toxic feedback. Second, reviewers
may direct feedback to developers with fewer outside options, who may respond by increasing
effort. Both factors make toxic feedback appear beneficial in OLS, although the underlying
causal effect is negative according to IV estimates.

Panel B shifts the focus to positive feedback. OLS estimates show increases in code quantity
(19.5 %) and non-code activity (14.7 %). The IV results tell a different story: positive feedback
reduces non-code activity by 13 log points (12 %) while improving code quality by 6.4 %.
The difference arises from selection. High-performing developers are more likely to receive
positive feedback because they already produce good work. As a result, the OLS correlation
overstates the benefits of positive feedback. Once reviewer assignment is exogenous, the quality
improvement remains, but the spurious association with output disappears.

Panel C turns to constructive feedback. OLS estimates indicate a substantial increase in
code quantity and a minor decrease in code quality. In contrast, IV estimates indicate muted
quantity effects and a larger decrease in code quality, up to 10.39%. Developers who are already

productive are more likely to receive constructive suggestions for improvement, which makes

25

OLS estimates upward-biased. Once reviewer selection is removed, the true short-term effect
of constructive feedback is negative.

Taken together, these results indicate that OLS systematically overstates the benefits of
feedback due to endogenous reviewer assignment. After correcting for these biases, IV results
reveal that feedback tone and information affect productivity. These average effects may mask
important differences across developers and teams. I next examine how feedback effects vary

by demographics, ability, tenure, and team structure.

[Table 5 about here.]

6.4 Heterogeneous Effects

I explore how feedback effects differ across subgroups, focusing on differences by demographics,

coding ability, prior exposure, tenure, team structure, and the reviewer—developer match.

By Race. Figure F9 compares Asian and White developers, the two largest groups in the data
(see Appendix A.2 for race prediction). Most feedback types yield similar effects across groups,
but responses to toxic feedback differ: Asian developers increase future code output, while
White developers decrease. This may reflect different cultural norms around blunt critique
and parenting styles (e.g., greater tolerance for harsh feedback, or “tiger parenting”), with
Asian developers more likely to respond with extra effort, whereas White developers respond
by disengaging (Kim et al., 2013; Gelfand et al., 2011; Pinquart and Kauser, 2018).

By Gender. Figure F10 reports feedback effects by developer gender (see Appendix A.1 for
gender prediction). Male and female developers respond similarly to positive and construc-
tive feedback, but differ on toxic feedback: males reduce code quantity, while females slightly
increase it, though this is not statistically significant. With women making up only 12% of
the sample, this subgroup is likely selected. Future research should examine the mechanisms

behind these differences.

By First vs. Repeat Exposure. Figure F11 compares developers’ responses to their first
exposure to each feedback type versus repeated exposures. Most patterns are similar across
exposures, suggesting developers do not quickly adapt to feedback. The main exception is posi-
tive feedback: improvements in code quality appear mainly after repeated exposures, consistent

with developers internalizing appreciation more strongly over time.

By Developer Ability. Figure F12 compares feedback effects for developers with high and
low prior ability, defined by whether pre-feedback code quality is above or below the median.

26

Toxic feedback reduces code quality similarly for both groups. Positive feedback slightly ben-
efits high-ability developers, while constructive feedback tends to lower output for low-ability

developers, possibly because detailed suggestions overwhelm those with less skill.

By New Hires vs. Incumbents. Figure F13 compares developers who have just joined
a team with those who have been on the team longer. New hires are defined as developers
within their first two months on a team; all others are classified as incumbents. Overall, 14.2%
of developers are new hires.?? While incumbents represent a selected group who have chosen
to stay, the key distinction lies between developers unfamiliar with the team’s culture and
those already integrated. Toxic feedback is highly damaging for incumbents, whereas positive
feedback most strongly improves their quality. The contrast suggests that feedback becomes
more consequential once developers have integrated into the team: incumbents internalize praise

and criticism more strongly, while new hires treat feedback as part of the learning process.

By Team Hierarchy. Figure F14 examines feedback effects by team hierarchy score. In
more hierarchical teams, toxic feedback reduces future code quality more, while positive feed-
back improves it more, possibly because appreciation from high-status reviewers has stronger

motivational effects.

By Demographic Matching. Figure F15 and Figure F16 show feedback effects vary with
reviewer—developer demographic match. Toxic feedback is more damaging in male-to-male and
White-to-White interactions, reducing subsequent code quality, but is close to zero and sta-
tistically insignificant across other groups. Because female developers are relatively rare in
the sample, same-gender female pairs appear infrequently. These patterns suggest that demo-
graphic similarity amplifies how negative feedback is interpreted, consistent with social-identity
mechanisms. These patterns suggest demographic similarity affects feedback interpretation,

especially for toxic feedback.

6.5 Threats to Exclusion Restriction

Interpreting the IV estimates as causal requires that each type of feedback affects outcomes
solely through its designated channel. However, two concerns threaten this exclusion restric-
tion. First, feedback is multidimensional. If the instruments influence multiple dimensions at
once, the exclusion restriction may not hold. Second, reviewer characteristics such as gender,
seniority, or engagement may correlate with the feedback provided. As a result, the estimated

effects may reflect reviewer traits rather than the content of the feedback.

22If T use the first week or first month to define new hires, the share becomes only 4% or 8%.

27

To address these issues, I first test whether each instrument affects only the targeted type
of feedback. Then, I control for observable reviewer characteristics and demonstrate that the

main results remain robust.

6.5.1 Assessing Instrument Specificity Across Feedback Types

To evaluate whether the exclusion restriction holds, I first examine whether each instrument
shifts only its intended feedback type or also affects other dimensions.

These concerns apply to all types of feedback. For example, suppose the instrument for toxic
feedback also shifts the chance of receiving positive or constructive feedback. In that case, the
estimated effect of toxicity includes the influence of encouragement or detailed suggestions.
Likewise, if the instrument for positive feedback alters the probability of receiving constructive
or toxic feedback, the estimate cannot isolate the effect of positivity. In each case, the exclusion
restriction requires that the instrument move only one dimension of feedback.

To formalize this, I extend the baseline IV model in equations (1) and (2), separating the

three types of feedback:

Yimsea) = BN+ BUIE L+ OIS + DoXiy + Ymgear(ty + Eimits (3)
IE;L)T;E _ Toxic thoxic gToxie x| 4 ’Y;z?;é;r(t) I V%ﬁic7 (4)

[571,15 = ¢PZif,)t + 5PXi,t + ’Ygz,year(t) + ViF;n,t’ (5)

[i(:n,t = ¢CZi(,jt + 5CXi,t + 'Y%year(t) + Vz'?n,t? (6)

Let Yip, [141,1+4) denote the productivity of developer 7 in team m during weeks £+1 to t+4. The

variables [%c [P . and IS , are indicators equal to 1 if developer i received toxic, positive,

im,it > tim,ts im
or constructive feedback, respectively, in team m during week t; each equals 0 if the feedback
was non-toxic, negative, or non-constructive. The control vector X;; includes variables such
as the deciles of feedback volume and activity level in week ¢ — 1. T also include team-by-year
fixed effects v, year(), and the error term e, .

The augmented IV system in equations (3)—(6) addresses potential bias in the baseline IV
estimates. The concern is that the instrument for toxic feedback, ZEEXiC, may be correlated

with the receipt of other types of feedback—such as positive (I}

) and constructive (177)

feedback—even after conditioning on their instruments Zf , and th. If positive and constructive

feedback also affect developer productivity, conditional on toxic feedback and controls, then the

28

exclusion restriction is violated. In this case, tho"ic may influence Y;,,+ not only through toxic
feedback, but also indirectly by shifting exposure to other types of feedback.

Figure F6 presents estimation results from equations (3)—(6) for the key outcome variables.
Comparing Figure F6 with the corresponding results in Figure 6 shows that the estimates are

nearly identical.

6.5.2 Accounting for Reviewer Characteristics in Feedback Effects

A second concern for causal interpretation is that the estimated effects of feedback may be
confounded by underlying reviewer characteristics. That is, feedback content may be correlated
with reviewer traits that independently influence team outcomes. For example, if male or more
senior reviewers tend to provide more toxic feedback, the estimated impact of toxicity may
simply reflect the effects of reviewer gender or experience.

To address this concern, I augment the baseline specification by controlling for standardized
reviewer characteristics, including gender, race, seniority (measured by the first year of GitHub
activity), number of followers, and recent reviewing activity. As shown in Figure F7, the
results remain stable, suggesting that the estimated feedback effects are not driven by reviewer

demographics or experience but instead reflect the content of the feedback itself.

6.6 Unobserved Offline Feedback

The analysis so far considers only feedback delivered on the GitHub platform. Yet reviewers and
developers may also interact offline, and such unobserved exchanges could bias the estimated
effects. Consider toxic feedback. If reviewers are toxic both online and offline, the omission of
offline interactions leads the estimated on-platform effect B{mhne to be overstated, since it absorbs
both channels. If instead reviewers moderate their online feedback for reputational reasons and
redirect toxicity offline, the on-platform estimate understates the overall effect. The same logic
applies to positive and constructive feedback: whether offline interactions reinforce or substitute

for online ones determines whether the measured effect is too large or too small.

Multi-located vs. Co-located Teams. To assess the scope of bias from offline feedback,
I compare multi-located and co-located teams. Geographic dispersion of team members raises
barriers to in-person communication, making feedback in multi-located teams more likely to
occur online. I therefore interact feedback types with a co-location indicator C;,,. The baseline
effect 8¢ reflects multi-located teams, where feedback is primarily online. The effect in co-

located teams is 8¢ + n?, with n capturing how offline interaction shifts the impact relative to

29

the online-only baseline.

Km’[t+17t+4 ﬁt im,t + yr (im,t X Clm) + X Ft + Ym,year(t) + Eim,t
]zemt - Trt szt + FIXZt + Tm year() + uzmt

(180 % Cim) = N (Z00s % Cim) + TP X1+ Yo yeary +

I classify a team as co-located if all members are based in the same country (28.17% of teams
meet this definition).?®> Table F2 reports the interaction estimates n°. Most are statistically
insignificant, except the intensive margin of non-code quantity under constructive feedback.
Overall, these results suggest that unobserved offline communication introduces little bias into
the estimated effects of feedback.

7 Reviewer Quality

Having established the causal effects of feedback on worker outcomes, I turn to its role in ex-
plaining manager quality. A central challenge in measuring manager quality using worker pro-
ductivity value-added (VA) is sorting. If more productive workers are systematically matched
with certain managers, estimated manager VA may reflect differences in worker ability rather
than the causal effect of managers on productivity. The same concern arises in the teacher
VA literature, where students of different abilities may be non-randomly assigned to particular
teachers (Rothstein, 2010, 2017).

The ideal design would involve randomly assigning many workers to each manager. This way,
manager quality could be defined as the systematic change in worker productivity after meeting
a manager. In this framework, good managers are those who consistently raise productivity
relative to a worker’s baseline.?!

Because random assignment is rarely available, researchers have developed alternative ap-
proaches. One strand estimates manager fixed effects in regressions of firm or worker outcomes.
These often exploit workers who switch managers. For example, Bertrand and Schoar (2003)
use CEO moving across firms to study firm-level policies, while Lazear et al. (2015); Bender

et al. (2018); Diaz et al. (2025) use workers switching managers or supervisors. Another strand

23Location is inferred from developers’ self-reported profiles; see Appendix A.3. Observations with missing
location are excluded when constructing the variable but retained in regressions. As a more flexible alternative,
I measure dispersion by identifying the country with the largest share of members and calculating that share.
Teams with a share below the sample median are classified as multi-located, yielding a more balanced division
between co-located and dispersed teams. Figure F19 reports results from separate regressions in each subsample.

24T abstract from managers’ role in selecting people for their teams. As Hoffman and Tadelis (2021) discuss,
good people managers may excel at identifying talent. Here, I focus only on how much managers change workers’
productivity before and after the match, ruling out the possibility that better managers select better workers.

30

measures manager quality using survey responses (e.g., Ichniowski et al., 1997; Bloom and
Van Reenen, 2007; Hoffman and Tadelis, 2021). Although these approaches have produced
valuable insights into the role of managers, it is important to note that fixed-effects methods
depend on worker mobility.2> Meanwhile, survey-based measures reflect perceptions that may
only imperfectly capture objective effects on productivity.

A related literature in education evaluates teacher quality using VA methods. These meth-
ods measure teachers by the test score gains of their students (Hanushek, 1971; Kane and
Staiger, 2008; Chetty et al., 2014) This framework is attractive because it leverages the perfor-
mance of all students, rather not only those who switch teachers. It relies on objective outcome
measures. Building on this work, I adopt the forecast-based estimator of Chetty, Friedman,
and Rockoff (2014). This method addresses sorting concerns and improves estimation precision.
The idea is to forecast a manager’s value-added in period ¢ using data from other periods. It
applies jackknifing and ex-ante shrinkage to reduce noise and bias. This estimator sharpens

inference by separating actual manager effects from random fluctuations in worker performance.

7.1 Reviewer Quality Measures: Value-Added (VA)

I first use the forecast-based estimator to estimate reviewer VA in a random-assignment sample
of developers and reviewers, where sorting is absent. Reviewer quality is measured as the change
in developer productivity before and after meeting the reviewer. I then extend the estimator
to the full sample, which includes both random and non-random assignment. To validate the
approach, I compare overlapping reviewers across random and non-random assignment samples.
The estimates align closely, providing evidence that the forecast-based estimator generates valid
measures of manager quality even outside the random assignment.

I apply the forecast-based estimator in three steps. First, I compute residuals of developer
code output after controlling for observables; these residuals capture reviewer contributions
and estimation noise. Second, I estimate the best linear predictor of each reviewer’s mean
residual in period ¢ using their residuals from all other periods. Third, I form the reviewer’s
VA in period t by forecasting their residuals with data from every other period. This procedure
jackknifes across periods, incorporates shrinkage weights, and allows reviewer VA to vary over
time.2® Appendix D.2 provides further details.

Developer weekly code output is measured by the total number of code lines they submitted

to a team in a week. I control for the code-case characteristics (e.g., bug fix, enhancement),

258ee, for example, Abowd, Kramarz, and Margolis (1999); Andrews, Gill, Schank, and Upward (2008);
Bonhomme, Lamadon, and Manresa (2019).

26This approach ensures that VA estimates are not mechanically correlated with the outcome being validated
and reduces noise, which is particularly important when sample sizes are small (Bacher-Hicks and Koedel, 2023).

31

team- and firm-level code output, and demographics.?” Following prior work, I restrict to cases
where prior output is available and exclude teams with fewer than 10 members.

Panel (a) in Figure 9 plots the empirical distribution of reviewer VA estimates in the ran-
dom sample. A one standard deviation (SD) increase in reviewer VA increases developer code
quantity by 0.20 SD and code quality by 0.10 SD. Panel (b) shows that reviewer VA estimates
are strongly correlated across these two outcomes, suggesting that reviewers who increase code
quantity also tend to improve code quality. Figure F2 shows the correlation between a de-
veloper’s weekly code quantity and code quality. This relationship is positive both with and

without developer fixed effects.
[Figure 9 about here.]

I extend the analysis to the full sample, which includes teams where reviewer assignment is
not random. Panel (¢) and (d) in Figure 9 compares the distribution of reviewer VA estimates
in the random-assignment sample and the full sample. The two distributions are very similar
across both outcome measures of developer productivity, suggesting that the forecast-based
estimator produces consistent results beyond the random-assignment setting. Figure F1 shows
that reviewer VA estimates are strongly correlated across these two outcomes in the full sample.

To validate the forecast-based approach, I focus on reviewers who appear in both the random
and non-random samples. Since these reviewers work with different developers across samples,
I compare their relative rankings across estimation methods. Figure 9e shows that reviewer VA
estimates are highly correlated across samples (correlation = 0.7).

Firms devote substantial resources to recruiting and retaining high-quality managers (e.g.,
Lucas, 1978; Bloom et al., 2013; Gabaix and Landier, 2008). I have shown that managers’
feedback affects worker productivity. To connect these results, I next estimate the effect of

being assigned to a high-VA reviewer on developer output:

}/imt = 6 nghVA](z)t + X;tIB2 + Ym,year(t) + Eim,t) (7)

where Y, is developer i’s code output in team m at week ¢, HighVA), equals one if the
assigned reviewer j has above-median reviewer value-added (VA), X;; is a vector of developer-
level controls, and 7y, year(r) are team-by-year fixed effects.

This regression is estimated by OLS using the random-assignment subset, where reviewer

assignment is plausibly exogenous. The coefficient 3 reflects differences in developer output

2TIn teacher value-added (VA), teachers are assigned at the start of year ¢, and researchers compare end-of-
year scores in t with baseline scores in ¢ — 1. In my setting, reviewers are assigned in week ¢, but code produced
in week t precedes the review. I therefore compare output in £+ 1 to output in ¢ — 1, using week ¢ only for
assignment. In the estimation, I winsorize code output at the 95th percentile to address unusually large code
commits and then standardize the log of code lines. I also include a control for missing code output using an
indicator variable.

32

when reviewers of differing VA are randomly assigned. I find that developers assigned to high-
VA reviewers produce 53% more code than those reviewed by lower-VA reviewers. However,
these gains can be offset by the tone of feedback. As shown in Figure 6a, a single toxic feedback
message reduces subsequent code quantity by about 43%. Taken together, these results suggest
that while reviewer skill increases developer productivity, toxic feedback can nearly eliminate

the benefits of high managerial quality.

7.2 Explanatory Power of Feedback for Reviewer VA

VA measures capture the overall impact of reviewers on worker outcomes. These estimates are
constructed without incorporating any information about feedback content. I then ask: How
much of this variation in reviewer VA can be explained by the feedback they provide?

To assess this explanatory power, I use Extreme Gradient Boosting, a flexible ensemble
method that captures nonlinearities and interactions and is increasingly applied in economics
(e.g., Zeltzer et al., 2023; Nekoei et al., 2024). Appendix G provides details.

I first include reviewer characteristics such as gender and race to provide a benchmark for
explanatory power. I then compare three groups of feedback-based variables. The first group
includes only feedback quantity, measured by the number of messages sent. The second adds
full feedback features, represented by 768-dimensional semantic embeddings that capture the
linguistic content of feedback. The third uses selected feedback features, defined as the shares
of messages that are toxic, positive, or constructive.

Figure 10 shows that feedback substantially explains variation in reviewer VA. In the
random-assignment sample, reviewer gender and race explain only 0.21% of the variance in
reviewer VA, while feedback quantity accounts for about 7%. Feedback quantity and quality to-
gether explain about 22% of the variation. A simpler model that includes feedback quantity and
the three feedback types—toxic, positive, and constructive—captures about 84% (12.5/14.88)
of the explanatory power of the full set of feedback quantity and quality variables. Panel (b)
shows similar patterns for the full sample.

These results indicate that feedback can explain a large share of manager quality. This
suggests that firms can evaluate managers through the feedback they provide in real time. This

offers a practical tool for identifying high-quality managers.

[Figure 10 about here.]

8 Conclusions

Managers play a central role in affecting worker productivity, but the mechanisms through

which they affect remain less understood. This paper opens this “black box” by studying how

33

managers affect workers through feedback. Using over 230 million feedback messages during
code review from software teams on GitHub, I exploit random reviewer assignment to show
that feedback has large and significant effects on developers’ productivity and retention.

Feedback is more than information transfer. It can also serve as a non-monetary incentive
that affects workers” motivation and productivity. Toxic feedback not only reduces developers’
future code quantity and quality but also lowers their retention within the firm. Positive feed-
back increases future code quality, improves developers’ retention, and generates spillovers to
coworkers and other teams. Unlike traditional incentives such as bonuses, wages, or promotions,
feedback is not constrained by budgets or limited slots. These results highlight feedback as a
scalable and cost-effective channel to improve productivity.

In the software industry, the costs of toxic feedback are particularly large. The GitHub
platform alone underpins a digital economy valued at over $8.8 trillion (Hoffmann et al., 2024).
Developers exposed to toxic feedback produce 43% less code output. Making feedback more
positive improves code quality by 6% and generates spillovers of 7%. These results imply that
even modest improvements in tone could produce sizable productivity gains globally.

Methodologically, the paper shows that LLMs can be used to study organizational behavior
at scale. Feedback is one example: LLMs can classify its tone and information across millions of
feedback messages, enabling systematic analysis of managerial communication. In this paper, I
focus on three dimensions that aim to capture the most representative features of feedback with
direct policy relevance. However, the flexibility of LLMs allows researchers to examine many
other features of feedback and broader workplace communication, such as linguistic formality,
gendered language, and stylistic variation.

Since the main goal of this paper is to provide the first evidence on the effectiveness of
feedback, I do not examine whether managers strategically target feedback to specific workers.
I find a substantial heterogeneity in feedback effects across worker characteristics such as de-
mographics and ability. Future research could investigate whether certain types of managers
provide more targeted or adaptive feedback. Another promising direction is to study upward
feedback from workers to managers. While this paper focuses on feedback from managers to
workers, understanding how workers’ responses, evaluations, or suggestions influence manage-
rial behavior and performance would offer a more complete view of feedback dynamics. More
broadly, studying how different forms of communication affect team performance would help

identify managerial practices that make modern teams more productive.

34

Figure 1: Organization Structure and Feedback on GitHub

(a) Firm and Team (b) Case and Feedback

Firm — DeepSeek l

Firm
(Organization)

Team b | DeepSeek-R1 |
Case —— | Cade |

-
P

Comment 1

Team
(Repository) —>

synapseml|
jinciliu.github.io

Individual
Member —»

Feedback —» = Nontoxic

Comment 2 .
Toxic

(¢) An Example of Code Case

fix: adding escape command in order to focus out of the sticky scroll #178020 <o~

1~ Merged w merged 5 commits into main from aiday/issue177871 (CJ o]\

— Case Created Time

@) Conversation 11 - Commits 5 () Checks 0 [® Files changed 3 +34 -18 mmmm
m —» Developer Corttie) | pevemes
Fixes #177871 —» Reviewer
Simple fix to add escape command to focus out of the sticky scroll Pon—

@ ©

n Mar 22, 2023 View reviewed changes

148 + export class EscapeStickyScroll extends EditorAction2 {

149 + constructor() {

150 super({

N + id: ‘editor.action.escapeStickyScroll',

52N . title: {

153 + value: localize('escapeStickyScroll.title', "Escape Sticky Scroll"),

marked this conversation as resolved. ¥
(3} | Mar 22, 2023 Member
ITh\s is very similar to breadcrumbs.selectEditor, | suggest using that wording instead of escape I —_— Feedback
a1

©f @ ceming Verlfed —» Developer change
o] @ chenging the intermediory method name to selecttditor Verified

1 H'hesechawgés on Mar 22, 2023 View reviewed changes) L.
‘ ° - - — Reviewer Decision

Notes: Panel (a) shows that some teams (repositories) belong to firms (organizations), while others do not. In
this study, I include only teams affiliated with firms, excluding those created for individual or hobby purposes
such as personal websites. Panel (b) illustrates within-team communication: after a developer submits a case,

reviewers provide feedback on the submission. Panel (c¢) presents an example of a code case (Pull Request
#178020).

35

Figure 2: Feedback Classification and Sources of Variation

(a) Feedback Classification Results

Toxic:0.21 Non-Toxic
Positive: 39.39 Negative
Constructive: 31.36 Non-Constructive

(b) Sources of Variation in Feedback Tone and Information

Toxic Positive Constructive

Total: 1.81 Total: 7.42 Total: 10.51
—+0.00- —+0.00-

12

R2 (100%)

4000 +0.00-
o L[F059]

T T T T T T T T T T T
Team Reviewer Case Developer Team Reviewer Case Developer Team Reviewer Case Developer

Notes: Panel (a) shows the share of feedback messages by type in the random reviewer sample: 0.21% toxic,
99.79% non-toxic, 39.40% positive, 60.60% negative, 31.36% constructive and 68.64% non-constructive. These
labels are classified using LLMs (BERT-based models and GPT) that analyze feedback, including toxicity
classification flags for intentional harm language, positivity analysis to classify positive or negative tone, and
constructiveness classification to evaluate whether feedback offers specific, actionable information. Panel (b)
decomposes variation in feedback tone (toxicity and positivity) and information (constructiveness). Each bar
shows how much of the variation in weekly feedback shares is explained by different sources. The unit of
observation is a developer—team—week. The dependent variable is the share of feedback messages that each
developer receives in that team-week that are toxic, positive, or constructive. Explanatory factors include team,
reviewer, and developer fixed effects, and case characteristics such as whether the case involves an enhancement
or a bug. R? values are shown in percentage terms and stacked to illustrate cumulative explanatory power. The
sample is restricted to the random reviewer subsample.

36

Figure 3: Team Feedback Structure

(a) Distribution of Team Feedback Hierarchy Scores

©
>

o
w

Share of Teams
o o
- N

M—HT_M

0.0 0.2 0.4 0.6 0.8 1.0
Hierarchy Score

©
o

(b) Examples of Feedback Structure

T _ee e
5 O 0ocoO00OD

Hierarchy Score =0 Hierarchy Score = 0.5 Hierarchy Score = 1

I Review-only
Review & Code
Code-only

A—»B A reviews B's code

Notes: Panel (a) shows the distribution of hierarchy scores among teams. The hierarchy score measures how
one-directional feedback flows within a team: a score of 1 indicates fully hierarchical feedback (one-way), while
values near 0 indicate reciprocal reviewing. Teams with only one case are excluded. Figure F17 shows the
distribution of teams with five members and of teams in the random-assignment sample. Most teams have
hierarchy scores close to 1, indicating predominantly hierarchical feedback structures. Panel (b) shows three
examples of team feedback networks. In calculating the hierarchy score, all feedback instances are counted in
E. For visualization only, duplicate links (when a reviewer evaluates multiple cases for the same developer) are
collapsed into a single edge to simplify the network diagrams. The left network has a score of 0, where members
review each other’s code; the middle network has a score of 0.5, indicating partial reciprocity; and the right
network has a score of 1.0, indicating complete hierarchy. Node colors denote roles (review-only, mixed, or
code-only). Directed edges represent review relationships, where A — B means A reviews B’s code.

37

Figure 4: Distribution of Reviewer Instrument Variables and First Stage

(a) Reviewer Toxicity

34
.05
- .04
<
Q 24
IS 03 @
© =
(45 3]
5 o
c *.02 g
Q9 o
S =
@ 1 - .01
A .
-0
0- - _.01
I T T
-.035 015 .065
Reviewer Toxicity IV
(b) Reviewer Positivity (c) Reviewer Constructiveness
154 o
_ / 2 [/ k7
[] B 1
o | A o ™ % .
S 1 / ° a e - =
5 7 5 1| V] <
n / o N 06 / 59
5 /1 o 5 L £
= = [2
2 8 2 1 Le @
3] o S 04 =
© .05 © o
i i (&)
-3
.02+
=5
-2
0- o
—.‘35 —.‘25 —.‘15 —.65 .65 .1‘5 .éS .3‘5 —.‘45 —.‘35 —.‘25 —,‘15 —.65 .65 .1‘5 .2‘5 .3‘5
Reviewer Positivity IV Reviewer Constructiveness IV

Notes: Each panel shows the distribution of reviewer instruments and the corresponding first-stage relationship
between the reviewer’s feedback style and the feedback received by developers. The instrument is the reviewer’s
leave-developer-out average feedback share, residualized by team-by-year fixed effects. I only include teams with
at least 2 reviewers and reviewers who have handled at least 10 cases. This leaves 480,697 cases and 10,873
reviewers, with an average of 44.2 cases per reviewer. The bars represent the distribution of reviewer instrument
values, while the solid line shows the kernel-weighted local polynomial fit of the first stage. Panel (a) plots
reviewer toxicity (top and bottom 1% excluded), Panel (b) positivity, and Panel (c) constructiveness.

38

Figure 5: Balance of Reviewer Instruments

(a) Reviewer Toxicity

Male=True
Male=Missing -
Asian=True -
Asian=Missing
Number of followers - Joint p-val 1V: 0.564
Total activities in the past year -|
First year recorded activity

"Bug’ related

’Enhancement’ related

Project stage=Early - [

Project stage=Stable I

Project stage=Mature - I =

Ot g

-.15 -1 -.05

® Reviewer Toxicity IV

(b) Reviewer Positivity

Male=True -

Male=Missing |

Asian=True -

Asian=Missing |

Number of followers |

Total activities in the past year -{
First year recorded activity |
'Bug’ related -|

'Enhancement’ related |

Project stage=Early -{

Project stage=Stable |

Project stage=Mature -

(T —
——
Joint p-val IV: 0.435

H
]
-

——

(c) Reviewer Constructiveness

—

Male=True -
Male=Missing -| —
Asian=True - »—b—<
Asian=Missing { -
Number of followers - i
Total activities in the past year -{ m
First year recorded activity -| »—-‘w

'Bug’ related | ——s
'Enhancement’ related |
Project stage=Early -{

Project stage=Stable |

Project stage=Mature -/

Joint p-val IV: 0.116

-15 -1 -.05 0 .05 A A5 -15 -1 -.05 0 .05 A A5

= Reviewer Positivity IV m Reviewer Constructiveness IV

Notes: Each panel reports OLS coefficients from regressions of the reviewer instrument on standardized developer
and case characteristics. The instrument is the reviewer’s leave-developer-out average feedback share residualized
by team-year fixed effects. Developer characteristics include gender, race, number of followers in 2023, prior-
year GitHub activity, and first year of GitHub activity. Case characteristics include labels such as Bug and
Enhancement and project stage constructed from the team’s release version. Coefficients are shown with 95%
confidence intervals. p-values shown in the panels refer to joint significance tests of all characteristics. Standard
errors are clustered at the reviewer level. The sample is the random-assignment subsample. Appendix A.1 and
Appendix A.6 provide variable definitions.

39

Figure 6: Effects of Feedback on Developer Productivity

(a) Toxic (b) Non-Toxic&Negative
Code Quantity Non-Code Code Quality 0.20
25 29 :
0.13[
@I—‘ 0.01,
T 0
-0.02 oo s EW]—‘
-0.0
-0.1
-2
—4-
-6
Cc;de Code Non—‘Code Non—‘Code Cése Cc;de Cc;de Cc;de Non—‘Code Non—‘Code Ceise Co‘de
Ever Log Ever Log Quality Quality Ever Log Ever Log Quality Quality
(c) Positive (d) Constructive
24 2

o N o 1

E;—‘ -00f [[0.05 T oo W : \—}—‘
’ —-0.07 -0.
-0.1 0.0
-0.1T
-2 0.1 -2
—44 —4
-6 T T T T T T -6 T T T T T T
Code Code Non-Code Non-Code Case Code Code Code Non-Code Non-Code Case Code
Ever Log Ever Log Quality Quality Ever Log Ever Log Quality Quality

Notes: This figure reports o-stage least squares (2SLS) estimates of the effects of different feedback types
on developer productivity within a team in the next 1-4 weeks following feedback: (a) toxic, (b) non-
toxic&mnegative (respectful criticism), (¢) positive, and (d) constructive. Productivity is measured at the devel-
oper—team—week level. Because the assigned reviewer decides what share of the submitted code is accepted or
rejected, I exclude the reviewed code and focus only on new code written in the subsequent 1-4 weeks to avoid
mechanical links between reviewer feedback style and measured productivity. Productivity has two dimensions:
quantity and quality. Code Quantity (first two bars) captures both the extensive margin (Code Ever) and the
intensive margin (Code Log). Non-code Quantity (third and fourth bars) measures engagement in non-coding
team tasks on GitHub within the team, such as answering users’ questions. Case Quality (fifth bar) is the
share of new cases merged into the team’s codebase and Code Quality (sixth bar) is the share of lines of new
code accepted. Feedback exposure is instrumented using reviewer-level feedback tendencies within the random
assignment sample. The sample includes teams with random reviewer assignment, at least three reviewers per
year, and reviewers with at least ten review cases per year. Lines indicate 90% confidence intervals, which are
trimmed at —0.6 and 0.3 in the graph to focus on the main range of estimated effects. Standard errors are
clustered at the reviewer level. Figure 7 shows the comparison across feedback types for each outcome variable.

40

Figure 7: Joint Effects of Feedback Tone and Information on Developer Productivity

(a) Code Quantity (Ever) (b) Code Quantity (Log)
Single Type Joint Type
0.20
.05
= 0.03 0.04] —
[(o))
o 3
° 2 L]
° 9 -0.07
o Q
&) O
c -0.0 c
G -05 008 o 04
= - 5
S -0.0 2
ﬁ 0.0 i}
Dep Mean: 0.85 Dep Mean: 5.1
-.15
To‘xic Pos‘itive Consl‘ruc\we Non'Hoxic& Posil‘ive& Pos\t‘we& Pos‘i(ive Cons\‘ructive Non'Huxic& Pos\‘\ive& Posi{ive&
Negative Construct NonConstruct Negative Construct NonConstruct
(c) Non-Code Quantity (Ever) (d) Non-Code Quantity (Log)
. 0.1J
g 05 =
q>,) 05 g
w S
; 0.01 [0} 05 ooJ
S <0.01 o i
8 I e * T 3 J
LI) -0.0 -0.0 0.0 1 -.05 -0.02
c +0.0: g
§ 054 bz -0.0¢
- c _.154 -0.1
g s 1540.14 0. T
— 4
(&
® o
i i
Dep Mean: 0.96 Dep Mean: 2.45
-15
To‘xic Pos‘itive Consl‘ruclive Non'Hoxic& Posil‘ive& Posi(‘ive& Toxic Pos‘itive Consl‘ructive Non'Hoxic& Posi‘live& Posi{ive&
Negative Construct NonConstruct Negative Construct NonConstruct
(e) Case Quality (f) Code Quality
0.11] 0.09]
> ‘? .05 0.0J
T % E
3]
¢}]
8 8
© e}
o LJ o [
c -0.02 c
o _05 o -.05 _0_0‘1
g I3
2 < -0.07 -0.0
T 0.0
-0.1
q -0.1
Dep Mean: 0.55
-15 -.15
To‘xic Pos‘itive Consl‘ruclive Non'Hoxic& Posil‘ive& Posil‘ive& To‘xic Pos‘itive Consl‘ructive Non'Hoxic& Posi‘live& Posi‘tive&
Negative Construct NonConstruct Negative Construct NonConstruct

Notes: This figure reports 2SLS estimates of the effects of single and joint feedback types on developer pro-
ductivity within a team in the next 1-4 weeks following feedback. The first three bars correspond to single
feedback types: toxic, positive, and constructive; the fourth is non-toxic & negative; the fifth, positive & con-
structive; and the sixth, positive & non-constructive. Joint feedback types with very small shares are omitted,
based on the share reported in Table 3. The first four bars replicate those in Figure 6. Panels (a) and (b)
report Code Quantity, both the extensive margin (Ever) and the intensive margin (Log). Panels (c) and (d)
report Non-Code Quantity, which measures engagement in non-coding tasks such as answering users’ questions.
Panel (e) reports Case Quality, the share of new cases merged into the team’s codebase, and Panel (f) reports
Code Quality, the share of lines of new code accepted. Feedback exposure is instrumented using reviewer-level
feedback tendencies within the random assignment sample. Lines indicate 90% confidence intervals, which are
trimmed at —0.6 and 0.3 in the graph to focus on the main range of estimated effects. Standard errors are
clustered at the reviewer level. 41

Figure 8: Effects of Feedback on Developer Outcomes

(a) Tradeoff: New Code Quality and Old Code Rewritten (GitHub)

3
E .05 0.04 (5 u 0.40 T
g é 0.19
2 = |
ng —.05- I _Ig)
2 007 | S -4
w B
Q
i ~0.62
sl Dep Mean: 0.69 -8 Dep Mean: 3.99
Toxic Positive Constructive Toxic Positive Constructive
(b) Retention (LinkedIn): Firm Switch and Industry Exit
154
6
§ g
2 >
%054 004
[£
c c 0
.g o ~0.01
[
aé'j 0.01 [%’ o5
\ \Wg -0.07
1]
N Dep Mean: 0.15 Dep Mean: 0.08
Toxic Positive Constructive Toxic Positive Constructive

(c) Spillover Effects (GitHub): Coworkers and Other Teams

A4 (72}
» €
g 3
5 [
3 o %7 0.04
[e] .05+ 0.04 ey
o . o) I
2 £
[2]
o <0.01 2
= = T
2 l 3
= 4 -0.04
= o 7 -005 004 |
o -0.03 °
o [
w -.05- (&]
o [
9 o
g 5
<
» 2

-1 L -154

Toxic Positive Constructive Toxic Positive Constructive

Notes: This figure reports 2SLS estimates of the effects of different feedback types on developer outcomes after
receiving feedback. Panel (a) shows the tradeoff between new code quality and old code rewritten. New code
quality corresponds to the sixth bar in Figure 6. Panel (a2) is the effect of rewritten code measures the log
of code revisions made to reviewed code. Rewriting shows the mechanism behind the decline in code quality
under constructive feedback, as revisions crowd out new code development. Panel (b) reports the effects of
feedback on developer retention over the next two years using LinkedIn data, measured by firm switches and
industry exits. Panel (c) presents spillover effects of feedback on other developers within and across teams in
the next 1-4 weeks on GitHub. Panel (c1) shows how receiving feedback in the focal team affects the share
of positive messages that developers send to coworkers. Panel (c2) reports effects on code quality in other
teams developers’ work. Feedback exposure is instrumented using reviewer-level feedback tendencies within
the random assignment sample. Lines indicate 90% confidence intervals. Standard errors are clustered at the
reviewer level. 42

Figure 9: Reviewer Value-Added (VA): Distributions, Correlation and Validation

(b) Correlation of VA Measures
(a) Distribution of VA Estimates

44 SD of Code Quantity = 0.20
SD of Code Quality =0.11

Reviewer Value-Added (Developer Quantity)
o
!

2z
2 24
8
_1d Coef.=0.636""*
1, (0.004)
0- -2
4 s s a ,‘_2 0 2 N 6 8] 2 s i _0s 0 05 i 15 2
Reviewer Value-Added Reviewer Value-Added (Developer Quality)
—— Code Quantity — — Code Quality
(c) VA based on Code Quantity (d) VA based on Code Quality
24 SD of Full Sample = 0.198 44 SD of Full Sample = 0.12
SD of Random Sample= 0.207 SD of Random Sample=0.11

Density
N
h

T T T T T T 1 T T T T T T T T T T 1
-1 -8 -6 -4 -2 0 2 4 6 8 1 -5 -4 -3 -2 -1 0 A 2 3 4 5

Reviewer Value-Added Reviewer Value-Added
—— Full Sample — — Random Reviewer Sample —— Full Sample — — Random Reviewer Sample

(e) Validation of VA Estimates

Coef.=0.68""*
(0.00)

Rank: Forcast-VA (Non-Random)

0 2 4 6 8 1
Rank: Forcast-VA (Random)

Notes: Panels (a) and (b) present reviewer VA estimates using the random assignment sample. Panel (a) plots
the empirical distribution of reviewer VA across productivity measures, and Panel (b) shows the correlation
between VA based on code quantity and code quality. Panels (c) and (d) compare the distributions of reviewer
VA measured in the random and full samples, using code quantity and code quality, respectively. Panel (e)
presents a binscatter plot comparing reviewer VA rankings in both random and non-random samples. Each dot
represents a bin of reviewers, and the slope and standard error are obtained from a regression of one ranking
on the other. The sample includes only reviewers who appear in both the random and non-random assignment
samples. There are 6,952 reviewers.

43

Figure 10: Feedback Characteristics Explain Variation in Reviewer Value-Added

(a) Random Assignment Sample (b) Full Sample
12
20
10
" +14.88 x
e : g +9.44
x x
7 g o
@ 10 il
4
5
2
6.65 2.95
0.21 0.19
0
Gender+Race Quantity Quantity+Full Features Quantity+Selected Gender+Race Quantity Quantity+Full Features Quantity+Selected

Notes: This figure shows how different aspects of reviewer feedback explain the variation in reviewer value-added
(VA), measured by its impact on developer code quantity. Panel (a) uses the random assignment sample;
Panel (b) uses the full sample. Each bar reports the test R? from models using different inputs: Quantity is
the number of feedback messages written; Quantity+Full Features adds 768 semantic dimensions of the text;
Quantity+Selected includes the weekly shares of toxic, positive, and constructive feedback per reviewer. Values
on the bars indicate the improvement in explanatory power relative to the quantity-only model. Figure G1
reports analogous results using developer code quality as the outcome.

44

Table 1: Descriptive Statistics

Description Full Sample Random Reviewer Sample
Panel A

Team (#) 1,774,184 3,457
Case (#) 56,637,066 4,228,687
Case with reviewers (%) 17.11 33.42
Reviewers (#) 364,889 35,072
Avg. case per team (#) 21.92 1223.22
Avg. case per reviewer-team-week (#) 1.51 1.80

Avg. team size (#) 1.03 19.42
Avg. team create year 2020 2020
Panel B

Message (#) 231,293,881 24,453,479
Avg. message per case (#) 4.08 5.78

Avg. message per team (#) 130.37 7073.61
Panel C: Reviewer Feedback (conditional on case with reviewers)
Message sent by reviewers (%) 36.33 32.60
Toxic (% of reviewer feedback) 0.21 0.21
Positive (% of reviewer feedback) 41.87 39.40
Constructive (% of reviewer feedback) 34.65 31.36
Panel D

Reviewers are junior to developers (%) 28.04 31.97
Reviewers who also write code within a team-year (%) 41.43 45.91
P(B reviews A | A reviews B) (%) 52.17 23.67
P(A is B’s next reviewer | A reviews B) (%) 10.91 7.32

Notes: This table reports summary statistics for all teams (Full Sample) and for teams that adopted reviewer
random assignment (Random Reviewer Sample) between 2017 and 2023. Team size is measured as the average
number of members from 2017 to 2023. Team creation year refers to the first year a team appears in our
data. Panel A reports summary statistics about team characteristics. Panel B includes messages sent by
both team members and external users. Panel C focuses only on feedback messages sent by reviewers, which
are the focus of this paper. Toxic and positive feedback are identified using a deep learning embedding model,
while constructive feedback is labeled using an LLM. For the Random Reviewer Sample, all reviewer feedback
messages are used. For the Full Sample, toxic and positive feedback are based on all reviewer feedback messages,
while constructive feedback is based on a random subsample due to budget constraints.

45

Table 2: Developer-Team Weekly Productivity Summary Statistics

N Mean Std. Dev P50 P75 P95 Max
Focal Team
Code Lines 12,216,340 1,119.21 54,898.64 0 3 537 41,436,660
Rewritten Lines 12,216,340 507.81 39,439.85 0 0 114 29,285,783
Non-Code Activities 12,216,340 6.36 39.89 2 5 26 62,784
Case 12,216,340 3.18 11.83 1 3 13 16,722
Case Correctness Rate 3,607,865 0.63 0.42 1 1 1 1
Code Acceptance Rate 4,095,714 0.74 0.38 1 1 1 1
Other Teams
Code Lines 12,216,340 2,812.08 199,277.21 0 0 617 78,347,840
Rewritten Lines 12,216,340 861.94 56,482.51 0 0 97 29,285,786
Non-Code Activities 12,216,340 549.94 2,938.83 10 43 1,819 62,801
Case 12,216,340 85.41 457.56 2 16 97 16,741
Case Correctness Rate 2,054,565 0.67 0.34 1 1 1 1
Code Acceptance Rate 2,467,433 0.70 0.40 1 1 1 1

Notes: This table shows the summary statistics of productivity measures for all developers in the random
reviewer sample from 2017 to 2023. Each observation is a developer-team-week. “Focal Team” refers to the
team in the current row; “Other Teams” aggregates activity from all remaining teams during the same week.
Winsorization at the 95th percentile is applied to all continuous variables to reduce the influence of extreme
outliers, which are common in developer productivity data (e.g., unusually large code commits or bursts of
activity). Case correctness rate and code acceptance rate are unaffected by winsorization. See Appendix A.4
and Appendix A.5 for variable definitions. Reported standard deviations reflect the original (pre-winsorization)

distributions.

46

Table 3: Share of Feedback and Examples by Toxicity, Positivity, and Constructiveness
Panel A: Share of Feedback Types

Constructive Non-Constructive
Positive Negative Positive Negative
Toxic 0.000 0.01 Toxic 0.02 0.17
Non-Toxic 9.43 21.91 Non-Toxic 29.95 38.50

Panel B: Examples of Feedback Types

Toxic Positive Constructive Feedback Message Share (%)
1 1 0 Sounds good, can’t wait to restaple my ass on. 0.02
1 0 1 You should just keep the file name, not the full file 0.01
path. This is Pantherinternal and doesn’t provide
value...
1 0 0 You will have to answer for it and you are talking 0.17
nonsense.
0 1 1 Docs look good overall. I think it would also be 9.43

helpful to add a few more screenshots showing the
overall page...

0 1 0 Looks good to me. 29.95
0 0 1 Still feels redundant. An angle should just be a 21.91
union of float and FreeParameter. Once the pa-
rameter is bound...
0 0 0 We need a way to detect the cluster domain. 38.50

Notes: Panel A reports classification results for reviewer feedback in the random reviewer sample, cross classified
by toxicity, positivity, and constructiveness. The entries across all cells sum to 100. Panel B gives example

messages for each category. “Share” corresponds to the same sample as in Panel A.

47

Table 4: First-Stage Estimates by Feedback Type

(1)

(2)

(3)

Panel A: Toxic Feedback

Reviewer Toxicity 0.708%** 0.703*#* 0.703%#*
(0.013) (0.013) (0.013)

F-Stat. 2931.913 2866.244 2868.936

Dependent mean 0.008 0.008 0.008

Panel B: Positive Feedback

Reviewer Positivity 0.843*#* 0.820*** 0.820%***
(0.005) (0.005) (0.005)

F-Stat. 34335.891 28057.043 27450.902

Dependent mean 0.706 0.706 0.706

Panel C: Constructive Feedback

Reviewer Constructiveness 0.875%** 0.864*** 0.863***
(0.004) (0.004) (0.004)

F-Stat. 61420.629 60183.796 60733.265

Dependent mean 0.518 0.518 0.518

Team FE v

Team x Year FE v v

Baseline controls v

N 1,179,525 1,179,525 1,179,525

Notes: Each panel reports a first-stage regression where the dependent variable is an indicator for receiving
a specific type of feedback. Baseline controls include developer gender, race, GitHub activity in the year
before submission, and the first year of GitHub activity. Case characteristics account for issue labels such
as Bug and Enhancement, and project stage is defined based on the release version of the team product.
Appendix A.1 provides details on the gender and race variables, and Appendix A.6 describes the construction
of project stage. Standard errors are clustered at the reviewer level. *p < .10, ** p < .05, *** p < .01.

48

Table 5: Effect of Reviewer Feedback on Developer Productivity Within a Team

Code Quantity Non-Code Quantity Quality
Ever Log Ever Log Case Code
Panel A: Toxic Feedback
OLS -0.013%** 0.065%** 0.004*** 0.080*%** -0.007*** 0.001
(0.003) (0.015) (0.001) (0.008) (0.002) (0.002)
RF -0.057* -0.421* -0.014 -0.106 -0.038 -0.068%**
(0.030) (0.250) (0.014) (0.111) (0.033) (0.025)
2SLS -0.074* -0.558%* -0.019 -0.138 -0.050 -0.091***
(0.039) (0.328) (0.019) (0.145) (0.044) (0.033)
Panel B: Positive Feedback
OLS 0.015%** 0.178%** 0.010%** 0.137*** -0.005%** -0.003**
(0.002) (0.008) (0.001) (0.004) (0.001) (0.001)
RF -0.009** -0.050 -0.003 -0.035** 0.006 0.012%**
(0.005) (0.035) (0.002) (0.016) (0.005) (0.003)
2SLS -0.033%* -0.192 -0.011 -0.130%* 0.022 0.044%**

(0.017) (0.136) (0.008) (0.061) (0.018) (0.013)

Panel C: Constructive Feedback

OLS 0.017%8F 0.184%**F 0.009*** 0.122*** _0.019%FF -0.015***
(0.001) (0.007) (0.001) (0.003) (0.001) (0.001)
RF —0.017*%** —0.025 —0.003* -0.008 -0.035%F*% _0.026%**
(0.004) (0.028) (0.002) (0.013) (0.003) (0.003)
2SLS ~0.046*%** -0.072 —0.009** -0.023 -0.100%** —0.072%**
(0.010) (0.080) (0.005) (0.035) (0.010) (0.008)
Dependent mean 0.846 5.018 0.957 2.450 0.545 0.693
N 1,176,459 995,139 1,176,459 1,125,874 998,141 1,028,793
Team x Year FE v v v v v v
Decile d-1 activity v v v v v v
Decile d-1 message v v v v v v

Notes: This table presents OLS, reduced form (RF), and two-stage least squares (IV) estimates of the effect
of reviewer feedback. All statistics reported are for the sample used in IV. Panels A, B, and C correspond
to toxic, positive, and constructive reviewer feedback, respectively. The outcome variables are developer
productivity measures within the team during weeks 1-4 after receiving feedback. All models include team-
by-year fixed effects. Standard errors are clustered at the reviewer level. * p < .10, ** p < .05, *** p < .01

49

References

Abowd, J. M., F. Kramarz, and D. N. Margolis (1999). High Wage Workers and High Wage
Firms. Econometrica 67(2), 251-333. 31

Adams-Prassl, A., K. Huttunen, E. Nix, and N. Zhang (2024). Violence Against Women at
Work. The Quarterly Journal of Economics 139(2), 937-991. 6

Adhvaryu, A.; N. Kala, and A. Nyshadham (2022). Management and Shocks to Worker Pro-
ductivity. Journal of Political Economy 130(1), 1-47. 1

Adhvaryu, A.; A. Nyshadham, and J. Tamayo (2023). Managerial Quality and Productivity
Dynamics. The Review of Economic Studies 90(4), 1569-1607. 1

Agan, A.; J. L. Doleac, and A. Harvey (2023). Misdemeanor Prosecution. The Quarterly
Journal of Economics 138(3), 1453-1505. 2, 19, 67

Andersen-Gott, M., G. Ghinea, and B. Bygstad (2012). Why Do Commercial Companies Con-
tribute to Open Source Software? International Journal of Information Management 32(2),
106-117. 7

Andreoni, J., W. Harbaugh, and L. Vesterlund (2003). The Carrot or the Stick: Rewards,
Punishments, and Cooperation. American Economic Review 93(3), 893-902. 5

Andrews, M. J., L. Gill, T. Schank, and R. Upward (2008). High Wage Workers and Low
Wage Firms: Negative Assortative Matching or Limited Mobility Bias? Journal of the Royal
Statistical Society Series A: Statistics in Society 171(3), 673-697. 31

Angrist, J. and G. Imbens (1994). Identification and Estimation of Local Average Treatment
Effects. 19

Angrist, J. D. and B. Frandsen (2022). Machine Labor. Journal of Labor Economics 40(S1),
S97-S5140. 68

Ashford, S. J. and L. L. Cummings (1983). Feedback as an Individual Resource: Personal
Strategies of Creating Information. Organizational Behavior and Human Performance 32(3),
370-398. 4

Bacher-Hicks, A. and C. Koedel (2023). Estimation and Interpretation of Teacher Value Added
in Research Applications. Handbook of the Economics of Education 6, 93-134. 31

Bandiera, O., I. Barankay, and I. Rasul (2007). Incentives for Managers and Inequality
Among Workers: Evidence from a Firm-level Experiment. The Quarterly Journal of Eco-
nomics 122(2), 729-773. 1

Bandiera, O., A. Prat, S. Hansen, and R. Sadun (2020). CEO Behavior and Firm Performance.
Journal of Political Economy 128(4), 1325-1369. 6

Banihashem, S. K., O. Noroozi, S. Van Ginkel, L. P. Macfadyen, and H. J. Biemans (2022).
A Systematic Review of the Role of Learning Analytics in Enhancing Feedback Practices in
Higher Education. Educational Research Review 37, 100489. 4

50

Becker, G. S. (1964). Human Capital. 1

Bekker, P. A. (1994). Alternative Approximations to the Distributions of Instrumental Variable
Estimators. Econometrica, 657-681. 68

Bénabou, R. and J. Tirole (2002). Self-confidence and Personal Motivation. The Quarterly
Journal of Economics 117(3), 871-915. 1, 5, 23

Bender, S., N. Bloom, D. Card, J. Van Reenen, and S. Wolter (2018). Management Practices,
Workforce Selection, and Productivity. Journal of Labor Economics 36(S1), S371-S409. 30

Bertrand, M. and A. Schoar (2003). Managing with Style: The Effect of Managers on Firm
Policies. The Quarterly Journal of Economics 118(4), 1169-1208. 1, 30

Beuschlein, J. (2024). Designing Debt Restructuring: The Adverse Effects on Labor Market
Outcomes. 18, 21

Bhuller, M., G. B. Dahl, K. V. Lgken, and M. Mogstad (2020). Incarceration, Recidivism, and
Employment. Journal of Political Economy 128(4), 1269-1324. 2, 18, 19, 21, 67

Bloom, N., B. Eifert, A. Mahajan, D. McKenzie, and J. Roberts (2013). Does Management
Matter? Evidence from India. The Quarterly Journal of Economics 128(1), 1-51. 3, 32

Bloom, N. and J. Van Reenen (2007). Measuring and Explaining Management Practices Across
Firms and Countries. The Quarterly Journal of Economics 122(4), 1351-1408. 1, 31

Bonhomme, S., T. Lamadon, and E. Manresa (2019). A Distributional Framework for Matched
Employer Employee Data. Econometrica 87(3), 699-739. 31

Brynjolfsson, E., D. Li, and L. Raymond (2025). Generative Al at Work. The Quarterly Journal
of Economics, qjae044. 14

Card, D., A. Mas, E. Moretti, and E. Saez (2012). Inequality at Work: The Effect of Peer
Salaries on Job Satisfaction. American Economic Review 102(6), 2981-3003. 5

Chetty, R., J. N. Friedman, and J. E. Rockoff (2014). Measuring the Impacts of Teachers
I: Evaluating Bias in Teacher Value-added Estimates. American Economic Review 104(9),
2593-2632. 4, 31, 70, 72, 91

Collis, M. R. and C. Van Effenterre (2025). Workplace Hostility. 6

Compte, O. and A. Postlewaite (2004). Confidence-enhanced Performance. American Economic
Review 94(5), 1536-1557. 1, 3, 5, 23

Crawford, V. P. and J. Sobel (1982). Strategic Information Transmission. Econometrica, 1431—
1451. 5

Diaz, B. S., A. N. Nazarrett, J. Ramirez, R. Sadun, and J. A. Tamayo (2025). Training Within
Firms. 30

51

Dobbie, W., J. Goldin, and C. S. Yang (2018). The Effects of Pre-trial Detention on Conviction,
Future Crime, and Employment: Evidence from Randomly Assigned Judges. American
Economic Review 108(2), 201-240. 18

Dobbie, W., P. Goldsmith-Pinkham, and C. S. Yang (2017). Consumer Bankruptcy and Fi-
nancial Health. Review of Economics and Statistics 99(5), 853-869. 18, 67

Dobbie, W. and J. Song (2015). Debt Relief and Debtor Outcomes: Measuring the Effects of
Consumer Bankruptcy Protection. American Economic Review 105(3), 1272-1311. 2, 18, 67

Dube, A., L. Giuliano, and J. Leonard (2019). Fairness and Frictions: The Impact of Unequal
Raises on Quit Behavior. American Economic Review 109(2), 620-663. 5

Ederer, F., P. Goldsmith-Pinkham, and K. Jensen (2024). Anonymity and Identity Online.
arXiv Preprint arXiv:2409.15948. 6, 13

El-Komboz, L. A. and M. Goldbeck (2024). Career Concerns as Public Good the Role of
Signaling for Open Source Software Development. 7, 71

Emanuel, N., E. Harrington, and A. Pallais (2025). The Power of Proximity to Coworkers. 4,
8, 10, 11

Fattori, A., L. Neri, E. Aguglia, A. Bellomo, A. Bisogno, D. Camerino, B. Carpiniello, A. Cassin,
G. Costa, P. De Fazio, et al. (2015). Estimating the Impact of Workplace Bullying: Hu-
manistic and Economic Burden Among Workers with Chronic Medical Conditions. BioMed
Research International 2015(1), 708908. 6

Folke, O. and J. Rickne (2022). Sexual Harassment and Gender Inequality in the Labor Market.
The Quarterly Journal of Economics 137(4), 2163-2212. 6

Frandsen, B., L. Lefgren, and E. Leslie (2023). Judging Judge Fixed Effects. American Eco-
nomic Review 113(1), 253-277. 19

Frederiksen, A., L. B. Kahn, and F. Lange (2020). Supervisors and Performance Management
Systems. Journal of Political Economy 128(6), 2123-2187. 1

Freimane, M. (2024). Gender Bias, Feedback, and Productivity. 5

Gabaix, X. and A. Landier (2008). Why Has CEO Pay Increased So Much? The Quarterly
Journal of Economics 123(1), 49-100. 3, 32

Gallup (2022). How Effective Feedback Fuels Performance. Retrieved April 19, 2025, from
https://www.gallup.com/workplace/357764/fast-feedback-fuels-performance.
aspx. 1

Gelfand, M. J., J. L. Raver, L. Nishii, L. M. Leslie, J. Lun, B. C. Lim, L. Duan, A. Almaliach,
S. Ang, J. Arnadottir, et al. (2011). Differences Between Tight and Loose Cultures: A
33-nation Study. Science 332(6033), 1100-1104. 26

Gibbons, R. and M. Waldman (1999). A Theory of Wage and Promotion Dynamics Inside
Firms. The Quarterly Journal of Economics 114(4), 1321-1358. 5

52

https://www.gallup.com/workplace/357764/fast-feedback-fuels-performance.aspx
https://www.gallup.com/workplace/357764/fast-feedback-fuels-performance.aspx

Gibbons, R. and M. Waldman (2004). Task-specific Human Capital. American Economic
Review 94(2), 203-207. 23

GitHub (2025). GitHub Enterprise. Accessed: August 27, 2025. 2
Haegele, 1. (2022). Talent Hoarding in Organizations. arXiv Preprint arXiv:2206.15098. 5

Hanushek, E. (1971). Teacher Characteristics and Gains in Student Achievement: Estimation
Using Micro Data. American Economic Review 61(2), 280-288. 31

Hartmann, J., M. Heitmann, C. Siebert, and C. Schamp (2023). More Than a Feeling: Accuracy
and Application of Sentiment Analysis. International Journal of Research in Marketing 40(1),
75-87. 14

Hartvigsen, T., S. Gabriel, H. Palangi, M. Sap, D. Ray, and E. Kamar (2022). ToxiGen: A
Large-Scale Machine-Generated Dataset for Implicit and Adversarial Hate Speech Detection.

In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics.
13, 66

Hattie, J. and H. Timperley (2007). The Power of Feedback. Review of Educational Re-
search 77(1), 81-112. 4

Heckman, J. J. and E. Vytlacil (2005). Structural Equations, Treatment Effects, and Econo-
metric Policy Evaluation. Econometrica 73(3), 669-738. 67

Hoffman, M. and S. Tadelis (2021). People Management Skills, Employee Attrition, and Man-
ager Rewards: An Empirical Analysis. Journal of Political Economy 129(1), 243-285. 3, 5,
24, 30, 31

Hoffmann, M., F. Nagle, and Y. Zhou (2024). The Value of Open Source Software. Harvard
Business School Strategy Unit Working Paper (24-038). 6, 34

Holmstrom, B. (1979). Moral Hazard and Observability. The Bell Journal of Economics, 74-91.
1,5

Holmstrom, B. (1982). Moral Hazard in Teams. The Bell Journal of Economics, 324-340. 5, 7

Hull, P. (2017). Examiner Designs and First-stage F Statistics: A Caution. Brown University
Working Paper 5. 19

Ichniowski, C., K. L. Shaw, and G. Prennushi (1997). The Effects of Human Resource Man-
agement Practices on Productivity. 1, 31

llgen, D. R., C. D. Fisher, and M. S. Taylor (1979). Consequences of Individual Feedback on
Behavior in Organizations. Journal of Applied Psychology 64(4), 349. 4

Jones, B. F. (2021). The Rise of Research Teams: Benefits and Costs in Economics. Journal
of Economic Perspectives 35(2), 191-216. 7

Jovanovic, B. (1979). Job Matching and The Theory of Turnover. Journal of Political Econ-
omy 87(5, Part 1), 972-990. 1

53

Kahneman, D. (1973). Attention and Effort, Volume 1063. Citeseer. 23

Kane, T. J. and D. O. Staiger (2008). Estimating Teacher Impacts on Student Achievement:
An Experimental Evaluation. 31

Kim, S. Y., Y. Wang, D. Orozco-Lapray, Y. Shen, and M. Murtuza (2013). Does “Tiger
Parenting” Exist? Parenting Profiles of Chinese Americans and Adolescent Developmental
Outcomes. Asian American Journal of Psychology 4 (1), 7. 26

Kluger, A. N. and A. DeNisi (1996). The Effects of Feedback Interventions on Performance: A
Historical Review, a Meta-analysis, and a Preliminary Feedback Intervention Theory. Psy-
chological Bulletin 119(2), 254. 4

Kolesar, M. (2013). Estimation in an Instrumental Variables Model with Treatment Effect
Heterogeneity. 19, 67, 68, 69

Kolesar, M., R. Chetty, J. Friedman, E. Glaeser, and G. W. Imbens (2015). Identification and
Inference with Many Invalid Instruments. Journal of Business & Economic Statistics 33(4),
474-484. 19, 68, 69

Kolhatkar, V., N. Thain, J. Sorensen, L. Dixon, and M. Taboada (2020). Classifying Construc-
tive Comments. arXiv Preprint arXiw:2004.05476. 14

Készegi, B., G. Loewenstein, and T. Murooka (2022). Fragile Self-esteem. The Review of
Economic Studies 89(4), 2026-2060. 3, 5, 23

Laohaprapanon, S., G. Sood, and B. Naji (2017). Ethnicolr Algorithm. 57

Lazear, E. P. (2000). Performance Pay and Productivity. American Economic Review 90(5),
1346-1361. 5

Lazear, E. P.; K. L. Shaw, and C. T. Stanton (2015). The Value of Bosses. Journal of Labor
Economics 33(4), 823-861. 1, 30

Lee, D. S., J. McCrary, M. J. Moreira, and J. Porter (2022). Valid T-ratio Inference for IV.
American Economic Review 112(10), 3260-3290. 19

Liu, Y., M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and
V. Stoyanov (2019). Roberta: A Robustly Optimized Bert Pretraining Approach. arXiv
Preprint arXiv:1907.11692. 13

Lucas, R. E. (1978). On the Size Distribution of Business Firms. The Bell Journal of Economics,
508-523. 3, 32

Marschak, J. and R. Radner (1958). Economic Theory of Teams. Chapter 5. 7

MeclIntosh, S., Y. Kamei, B. Adams, and A. E. Hassan (2016). An Empirical Study of the Impact
of Modern Code Review Practices on Software Quality. Empirical Software Engineering 21,
2146-2189. 11

o4

McKinsey (2024). Feedback Culture: Great Learning Design as a Bridge to Culture Building.
Accessed: August 27, 2025. 1

McTernan, W. P., M. F. Dollard, and A. D. LaMontagne (2013). Depression in the Workplace:
An Economic Cost Analysis of Depression-related Productivity Loss Attributable to Job
Strain and Bullying. Work & Stress 27(4), 321-338. 6

Metcalfe, R. D., A. B. Sollaci, and C. Syverson (2023). Managers and Productivity in Retail. 1

Mincer, J. (1962). On-the-job Training: Costs, Returns, and Some Implications. Journal of
Political Economy 70(5, Part 2), 50-79. 1

Minni, V. M. L. (2024). Making the Invisible Hand Visible: Managers and the Allocation of
Workers to Jobs. 5

Mirrlees, J. (1974). Notes on Welfare Economics, Information and Uncertainty. FEssays on
Economic Behavior Under Uncertainty, 243-261. 1

Mirrlees, J. A. (1976). The Optimal Structure of Incentives and Authority Within an Organi-
zation. The Bell Journal of Economics, 105-131. 1

Nagle, F. (2019). Open Source Software and Firm Productivity. Management Science 65(3),
1191-1215. 6

Nekoei, A., J. Sigurdsson, and D. Wehr (2024). The Economic Burden of Burnout. 33

Nielsen, M. B. and S. Einarsen (2012). Outcomes of Exposure to Workplace Bullying: A
Meta-analytic Review. Work & Stress 26(4), 309-332. 6, 13

O*NET (2025). Management Occupations. https://www.onetonline.org/find/family?f=
11. Retrieved August 19, 2025. 1

Pinquart, M. and R. Kauser (2018). Do the Associations of Parenting Styles with Behav-
ior Problems and Academic Achievement Vary by Culture? Results from a Meta-analysis.
Cultural Diversity € Ethnic Minority Psychology 24 (1), 75. 26

Rothstein, J. (2010). Teacher Quality in Educational Production: Tracking, Decay, and Student
Achievement. The Quarterly Journal of Economics 125(1), 175-214. 30

Rothstein, J. (2017). Measuring the Impacts of Teachers: Comment. American Economic
Review 107(6), 1656-1684. 30

Sarker, J., A. K. Turzo, and A. Bosu (2020). A Benchmark Study of the Contemporary Tox-
icity Detectors on Software Engineering Interactions. In 2020 27th Asia-Pacific Software
Engineering Conference (APSEC), pp. 218-227. IEEE. 13

Saygin, P. O., G. Pollard, T. Knight, and M. Rush (2025). Gender Biased Resistance to Harsh
Feedback. 5

Shapiro, C. and J. E. Stiglitz (1984). Equilibrium Unemployment as a Worker Discipline Device.
The American Economic Review 74(3), 433-444. 5

%)

https://www.onetonline.org/find/family?f=11
https://www.onetonline.org/find/family?f=11

Shastry, G. K., O. Shurchkov, and L. L. Xia (2020). Luck or Skill: How Women and Men React
to Noisy Feedback. Journal of Behavioral and Experimental Economics 88, 101592. 4

Smirnov, 1., C. Oprea, and M. Strohmaier (2023). Toxic Comments Are Associated with
Reduced Activity of Volunteer Editors on Wikipedia. PNAS Nexus 2(12), pgad385. 6

Solow, R. M. (1957). Technical Change and the Aggregate Production Function. The Review
of Economics and Statistics 39(3), 312-320. 1

Staiger, D. O. and J. H. Stock (1994). Instrumental Variables Regression with Weak Instru-
ments. 19

Sutton, R. and B. Wigert (2019). More Harm Than Good: The Truth About Performance
Reviews. GALLUP: Workplace. 1

U.S. Bureau of Economic Analysis (2025). Digital Economy. https://www.bea.
gov/data/special-topics/digital-economy. Retrieved September 8, 2025, from
https://www.bea.gov/data/special-topics/digital-economy. 1

Vasilescu, B., Y. Yu, H. Wang, P. Devanbu, and V. Filkov (2015). Quality and Productivity
Outcomes Relating to Continuous Integration in GitHub. In Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering, pp. 805-816. 10

Wagner, S. and M. Ruhe (2018). A Systematic Review of Productivity Factors in Software
Development. arXiv Preprint arXiv:1801.06475. 10

Weidmann, B., J. Vecci, F. Said, D. J. Deming, and S. R. Bhalotra (2025). How Do You Find
a Good Manager? 1, 4

Zeltzer, D., L. Einav, A. Finkelstein, T. Shir, S. M. Stemmer, and R. D. Balicer (2023). Why
Is End-of-life Spending So High? Evidence from Cancer Patients. Review of Economics and
Statistics 105(3), 511-527. 33

56

https://www.bea.gov/data/special-topics/digital-economy
https://www.bea.gov/data/special-topics/digital-economy

Appendix

A Demographics and Productivity Measures

A.1 Gender Prediction

To predict the gender of developers based on their profile page avatars, I select a deep
learning model that closely matches the images in the training sample in terms of resolution and
cropping methods. The chosen model trains vision transformers on male and female portraits
and produces, for each image, predicted probabilities for both genders. To determine the
optimal cutoff for gender classification, I use a sample labeled by human annotators and evaluate
accuracy across different thresholds. The highest accuracy is achieved with a cutoff of 0.85. For
each image, I first identify the gender with the higher predicted probability and then assign that
gender only if this maximum probability exceeds 0.85; otherwise, the observation is coded as
missing. Classification accuracy is computed on the labeled subset where a gender is assigned,
excluding cases left unclassified.

I then create a variable Male, which equals 1 if the image is classified as male, 0 if it is

classified as female, and 3 if the classification is missing.

A.2 Race Prediction

I use Ethnicolr, developed by Laohaprapanon et al. (2017), to predict developers’ race and
ethnicity from their names. The algorithm uses first and last names to classify individuals into
three racial categories: Asian, Black, and White. It is trained on data from the US Census,
Florida voter registration, and Wikipedia. For each developer, I take the race with the highest
predicted probability as the assigned category. When a name is unavailable, the observation
is coded as “missing.” This yields four mutually exclusive outcomes: Asian, Black, White, and
Missing. In the heterogeneous analysis, I construct the variable Asian, which equals 1 if the

predicted race is Asian, 0 if non-Asian, and 3 if missing. I define White analogously.

A.3 Location Prediction

I built the country variable in three steps. Between October 2023 and March 2024, I
scraped each developer’s free-text “location” field from their GitHub profile. I then standardized
entries—e.g., “Québec” — “Canada,” “Jt73{” — “China,” “Sao Paulo” — “Brazil”, “Miinchen”

— “Germany” . Finally, I assigned each user to exactly one country or flagged the entry as

57

https://huggingface.co/rizvandwiki/gender-classification

missing if it failed to match any country. The resulting variable records each developer’s self-

reported nation of residence.

Figure A1l: Geographic Distribution of Team Members

Team Members |
0 100k 200k 300k

4

Notes: This world map shows the number of team members by country, based on their reported location. Team
member is defined in Section 2.1.2. Darker red shades indicate higher team member counts. The United States
has the largest concentration, followed by India, China, and Brazil. Participation is also notable in parts of
Europe and Southeast Asia.

A.4 Code Quantity Measures

I distinguish between two types of code quantity based on the case (pull-request) lifecycle.
Let t denote a week, i a developer, and k a case. I define the following weekly code-quantity

measures for developer i:

New Code Lines
new__code_lines;; = Z additions; x ¢ opened
k:
open_ week(k)=t

where additions; k¢ opened 15 the number of lines added by developer ¢ when submitting case
k during week ¢t. These new code lines capture the total lines first submitted by developer ¢ in

week t, reflecting new coding effort before any review.

58

For example, if in week 2020-01 developer ¢ opens exactly one case k with 120 lines added,
new__code__lines; 2020.01 = 120.
Close Code Lines

close__code__quantity,, = Z additions; i ¢ closed

k:
close_ week(k)=t

where additions; j ¢ closed i the number of lines added by developer i for a case k is closed
during week t. This closed code quantity captures all lines merged into the codebase in week ¢
after revision.

For example, if in week 2020-01 developer i merges exactly one case k with 200 lines added,

close__code__quantity; 509091 = 200.

Rewritten Code Lines

)

Consider a developer i only works on one case k£ = 10 that opens in week ¢ = 2020-01 and closes
in week ¢ + 1 = 2020-02. Suppose

rewritten__code__quantity;, = Z (‘additionsi,k’tﬁdosed — additions; x opened

close_week(k)=t

additionsi,10,2020—01,0pened = 120, additionsi,10,2020—02,closed = 200.

Then:

new__code__lines; s020.01 = 120, new__code__lines; 592002 = 0,

and the rewritten code lines are

‘additiOHS@1072020_02,131086(1 — additiOHSi7107opened = ‘200 — 120‘ = &0.

A.5 Quality Measures

Case Quality

> k:author(k)=1, 1{COI'I'eCtk}

. open_ week(k)=t
case__quality, , = pen._week(k) ,

E k:author(k)=t, 1

open_ week(k)=t

59

where

1, if the initial code submission for case k is merged,
1{correcty} =

0, otherwise.

case__quality; , measures the share of cases opened by developer ¢ in week ¢ that meet review

standards without requiring substantial changes.

Code Quality

new__code__lines; ,

code_quality,, = :
—4 Y new__code__lines; ; + rewm'ttenfcodeﬁquantz’tyi,t
This metric captures the proportion of a developer’s submitted code in week ¢ that required
no further edits. A value of 1 indicates that every line added at case opening survived re-
view unchanged, while lower values reflect more extensive post-submission revisions. Higher

code__quality, , therefore signals better first-pass accuracy and overall code quality.

A.6 Project Stage

A GitHub release is the project’s official, stable snapshot. Because each release package
includes bug fixes, new features, or architectural changes, the sequence of releases offers a
natural way to track a project’s progress. Each release includes a Semantic Versioning (SemVer)
tag in the format MAJOR .MINOR.PATCH, such as v1.2.3. The three components indicate the scale
of change: the patch number increases for bug fixes, the minor number for backward-compatible
feature additions, and the major number for breaking or incompatible changes.

Most modern projects adopt the SemVer tag, and the release tag provides a reliable and
comparable signal of project stages. To classify project maturity, I extract the MAJOR and MINOR
components from each release’s Semantic Versioning tag. I then group releases into three stages.
Stage 1 (Early) includes all tags with MAJOR = 0, as well as 1.0.0, reflecting either pre-release
development or an initial stable version. Stage 2 (Stable) covers releases with MAJOR = 1
and MINOR > 2, representing backward-compatible feature growth. Stage 3 (Mature) includes
all releases with MAJOR > 2, indicating that the project has undergone at least one major
upgrade. 28 Projects that do not follow SemVer, for example, those using date stamps, commit
hashes, or missing tags, are grouped into a separate “non-SemVer” category. This approach
yields a simple, interpretable stage variable that can be compared across projects, much like

how academic papers move through stages such as data collection, analysis, submission, and

28Incrementing the PATCH number (e.g. 1.0.1 — 1.0.2) records a bug fix; raising the MINOR number (1.0.2
— 1.1.0) adds new, backward-compatible features; and advancing the MAJOR number (1.1.0 — 2.0.0) signals an
intentional, incompatible redesign. See https://semver.org/ for more information.

60

https://semver.org/

revision.

Assigning Cases to Project Stage. Let d; denote the opening date of case k, and let
{(s4,t;)}, represent the sequence of project releases, where s; is the stage assigned to release

1 and t; is the release date. The project stage at the time of case k is assigned as:
stage, = s;» where ¢ =max{i:t; <d}.

This procedure links each case to the most recently completed release stage available at the
time the case was opened. Among cases in the random reviewer sample, 15.45% fall into Stage 1
(early development), 17.40% into Stage 2 (stable), 42.19% into Stage 3 (mature), and 24.96%

are associated with a non-SemVer category.

B Random Reviewer Assignment

GH Archive does not record when teams enable random reviewer assignment, since such
changes do not appear in the event timeline. Instead, I infer adoption by identifying the earliest
pull request that modifies one of the configuration files associated with random assignment.
Table B1 lists these files and explains their functions. By noting the first change to any of these

files, I determine when each team activated the random reviewer assignment.

Table B1: Configuration Files Indicating Random Reviewer Assignment

Configuration File Purpose

CODEOWNERS GitHub’s native mechanism to assign reviewers by
file path. Changes to matched files auto-request
reviews from listed users or teams.

.github/auto_assign.yml or Config for the “auto-assign” Action: lists eligible
.github/auto-assign.yml reviewers and rules (e.g. random selection) for
automatic assignment on pull request open.
.github/reviewer_lottery.yml Defines reviewer pools and lottery rules for custom
or.github/reviewer-lottery.yml bots that rotate or randomly pick reviewers per pull
request.
.github/assign_reviewers.yml or Generic config used by GitHub Actions to specify
.github/assign-reviewers.yml reviewer pools and selection logic (e.g. round-robin,
weighted).
.github/workflows/assign_reviewers.yml or A workflow that reads the above config and
.github/workflows/assign-reviewers.yml auto-assigns reviewers on pull request events.
.github/workflows/auto_assign.yml or Workflow file for an Action that implements
.github/workflows/auto-assign.yml automated reviewer selection (e.g. based on past

workload or random choice).

Notes: This table lists the most common files and workflows used for random reviewer assignment. Additional
custom or third-party configurations may also exist, but this selection reflects a conservative approach.

61

Figure B1 illustrates the motivation for random reviewer assignment, drawn from a discus-

sion post highlighting the need to balance review workloads.

Figure B1: Reason for Automate Random Reviewer Assignment

As a user, | would like to have reviewers automatically assigned bas

3 abinoda opened on Nov 26, 2018 - edited by abinoda Edits ~

Many development teams struggle with th4 problem of reviews being distributed unevenly.|This results in |nefficient workloadqand
educed collaboration|

It would be nice to have a tool tha‘automai!ca“y assigns reviewers for pull requests based on the number of pull requests everycnel
has reviewed. This would need to be configurable Dy repo and take Into account teams.

Note that GitHub CODEOWNERS does something similar where reviewers are assigned based on what code was touched.

Specifically requested by @akshat12, @jisung (+). @twymer, @CariWest

w. So, you could ask

ple on the

sometimes reviev

for a f

a pretty complex feature — it just seems like it might be a nice complement to the integration you're developing!

A longer term feature request could be something to help distribute more evenly or just ways in the Ul to help identify rolling

patterns of things like that

Is it possible to assign automatically one PR reviewer randomly among the team members every PR has been created?

Ao

E g abinoda created this issue from a note in_Public Backlog on Nov 26, 2018

© g abinoda added (Y on Nov 26, 2018

Notes: The figure captures a discussion proposing automatic reviewer assignment using metrics such as each
member’s recent review workload. These systems are deterministic in design but generate reviewer selection
that is independent of case content and developer identity, conditional on workload. I therefore treat reviewer

assignment as random for identification purposes, meaning exogenous conditional on recent reviewing activity.
Original post, accessed 2025-01-31

Figure B2 shows two scenarios: Figure B2a with automatic random assignment, and Fig-
ure B2b where the developer selects reviewers manually—either via “git blame” suggestions or
by typing usernames directly.

Figure B3 shows an example of the “Reviewer Roulette” random assignment workflow.

Table B2 reports the share and total number of teams in major tech firms adopting GitHub’s

random reviewer feature. Overall, 0.2% of teams use the feature (3,457 out of 1,744,184).

62

 https://github.com/pullreminders/backlog/issues/101

Figure B2: Random Reviewer Example

(a) Review requested by Robot (b) Review requested by Developer
= noiwkait opt'\on‘tolexit Withc?utjwaitwir?g the task completion 724 o Update python documentation (rename folders prefixed by _) #6575 O cote -
: ‘ m y
[} ™ O
o @ o
o e, Robot requested a . s
ol.ﬂmm ot requesid e o lakesizsbytr 3 q
I reviewer S -
o DAY T p— .
@ Developer requested
I areviewer

0 subserin

Notes: This graph illustrates two types of review requests. Figure B2a depicts a GitHub bot initiating a review
request (random assignment), while Figure B2b shows a developer requesting a review.

Figure B3: GitHub Action for Random Reviewer Assignment

Reviewer Roulette (GitHub Action)

This GitHub Action automatically assigns a specified number of random reviewers to a pull requestl\t fetches events for the
TEPOSITOTy 10 Identily active Users and adds them as reviewers to te PR.

() github-actions happyhut, virtualhorse howpufferfish

Usage

Classic usage
on: Q
pull_request_target:
types: [opened, ready for_review, reopened]

jobs:
example_assign_revieus:
runs-on: ubuntu-latest
name: An example job to assign reviewers
steps:
- name: Checkout
uses: actions/checkout@va

- name: Assign random reviewers to PR
uses: ihs7/action-revieuer-roulettegvl
with:

number-of-reviewers: 2

Notes: This figure illustrates the Reviewer Roulette GitHub Action, which automatically assigns a specified
number of random reviewers to a pull request. The action fetches events from the repository to identify active
users and assigns them as reviewers. The top section highlights the successful execution of this action, with
random reviewers such as happyhut, virtualhorse, and howpufferfish being assigned. Detailed information
from GitHub Marketplace Action, accessed 2025-01-31

63

https://github.com/marketplace/actions/reviewer-roulette
https://github.com/marketplace/actions/reviewer-roulette

Table B2: Share of Teams in Big Tech Firms adopting Random Reviewer Feature

Firm Share(%) Teams | Firm Share(%) Teams
GitHub 3.226 341 Spotify 0.508 197
Pinterest 3.030 66 IBM 0.337 1780
Intel 1.173 597 Adobe 0.140 714
Apple 1.156 173 Uber 0.000 205
Netflix 1.156 173 PayPal 0.000 189
Salesforce 1.145 262 Yahoo 0.000 185
NVIDIA 1.124 267 Amazon 0.000 146
Microsoft 1.119 4645 Twitter 0.000 137
Stripe 0.917 109 Airbnb 0.000 120
Facebook 0.855 234 Dropbox 0.000 120
Oracle 0.800 250 eBay 0.000 100
OpenAl 0.794 126 Reddit 0.000 60
Google 0.723 1797 Zoom 0.000 43
Lyft 0.699 143 Snapchat 0.000 27
Tencent 0.585 171 Tesla 0.000 5

Notes: This table summarizes the share and total number of teams in major tech firms adopting the random
reviewer feature. Overall, 0.2% of teams used the feature (3,457 out of 17,741,894). GitHub, Pinterest, and
Intel show the highest adoption rates, with GitHub at 3.23% across 341 teams. Microsoft (4,645 teams) and
Google (1,797 teams) also have above-average adoption. Firms like Uber, Twitter, and Tesla show no adoption
during the sample period.

64

C Feedback Classification

Figure C1: Word Clouds of Principal Components Analysis (PCA) in Reviewer Feedback

hange thank make
8
ook EesSt
153 o
™ good add

g00

review

m'minor

otherwise
change remove

only
| I ‘ t ‘think

still well 1 O O

pdate
nitpick

u|

Notes: This figure presents word clouds for the top four principal components extracted from reviewer feedback
in the random reviewer sample. PCA reduces millions of feedback messages into a few components that capture
most of the meaningful variation in the data. Each word cloud visualizes one component, where larger words
appear more frequently within that dimension. The components consistently capture meaningful dimensions of
feedback—such as positive (e.g., good, thank), negative (e.g., not), and constructive (e.g., test, test) language.
A single word may load on multiple components if it conveys more than one meaning.

C.1 Toxicity

C.2 Constructiveness

I use large language models (LLMs) to detect constructive feedback on GitHub. I experi-
mented with small changes in prompt wording, aiming to give the LLM a clear and objective
instruction. I also tested including and excluding code snippets in the input. These changes did
not alter the binary constructive versus non-constructive classification on a manually labeled
validation set of 1000 feedback messages, although minor variations appeared in token-level
probabilities.

My specific LLM prompt is as follows:

System Content:

You are an experienced principal software engineer reviewing a pull request comment. Rate
its constructiveness on a scale from 0 (not constructive) to 10 (highly constructive). Focus on
whether the comment provides specific or actionable information. A specific comment identifies
a bug, suggests an improvement, or points to a concrete issue. If the comment is vague or lacks
detail, treat that as a weakness. Focus on the content, not on the tone. Provide them in JSON
format with the following key: info_score.

User Content:

Code: <INPUT>

65

Figure C2: Toxigen Annotation Setup for Evaluating

Answer questions about the text.
1) Do you think the text is human- or machine-generated?

Human

2) In your opinion, would this text be seen as harmful to anyone if an AI system wrote it?
Not at ail Very much so
3) In your opinion, would this text be seen as harmful to anyone if a person wrote it?

Not at all Very much so

al In your opinion, does the text express positive stereotyping? I

N ——» Positive stereotyping

2 Yes Maybe

5) |in your opinion, was the text intentionally written to be harmul to anyone? |
ains offensive/rude humor, insults, personal attacks, profanity, aggression _— |ntentiona||y harmful

uch so

E.g., this

Not at 2 Very m

6) I[n your opinion, does this text contain or allude to sexual content/acts? I

E.g. euphemism, double entendre, etc.
— Sexual content
Yes O Maybe
7) In your opinion, does the text refer to the given targeted group?
Please select one option from the list below.
-- please select ~

If the text refers directly/indirectly to one or more other groups, please list them below
cial, gender identity, sexuality, disability, immigrant, veteran, etc.); use commas to separate groups

e.g. women

8) In your opinion, how does the text refer to the targeted individual/group?

Please select one option from the list below.

- please select -- ~

1f you sel
or group is

"Other,” please provide a single sentence explaining how the individual/group is being targeted in general terms. If no individual
eted, you can leave this blank

£.9. positive stereotyping

QI In your opinion, does the text explicitly claim to be factual?

_— — Claim or factual
nformation

the text that the content is not fact (e.g. “these are just my thoughts, but...

nform, pi

please select v

Notes: This is from Figure 6 of Hartvigsen et al. (2022), which shows how human annotators label toxicity for
the Toxigen Classification Model.

Comment: <INPUT>

To identify the best-performing LLM for this task, I compare four OpenAl models (gpt-4.1-
nano, gpt-4o-mini, gpt-4o, and gpt-03) to find the one whose judgments most closely match
those of software industry professionals, while minimizing cost. The initial human labels are
produced by a master’s student in computer science and verified by a software engineer.

The annotator rates each feedback item on a 0-10 scale: scores of 0-2 indicate little or no
relevance or help, 3-4 indicate some relevance or help but with unclear specifics, and scores
above 6 indicate strong relevance and high helpfulness, including detailed error explanations or
suggestions that simplify code.

Once I obtain the ground truth and model predictions from different LLMs, I evaluate
performance using binary rather than absolute scores. I evaluate performance using binary
rather than absolute scores to reduce measurement error from minor discrepancies in human

ratings. To generate binary labels, I test three decision cutoffs (> 3, > 4, and > 5). Each

66

cutoff changes the share of feedback classified as constructive and affects model performance.

Table C1 reports results for each cutoff.

Table C1: Accuracy and F1 Scores by Model and Cutoff

gpt-4.1-nano gpt-4o0-mini gpt-4o0 gpt-o3
Cutoff Acc. F1 Acc. F1 Ace. F1 Acc. F1
>3 0.87 0817 0.76 0.760 0.82 0.804 0.80 0.783
>4 0.84 0579 090 0.814 0.88 0.767 0.90 0.828
>5 0.84 0.200 096 0.875 0.87 0.723 0.93 0.829

I select the gpt-4o0-mini model because it offers the best balance between precision and
recall, aligns closely with the human annotator’s definition of clear and actionable feedback, and
delivers performance comparable to higher-end models at a fraction of the cost. For example,
it achieves an F1 score of 0.814 at a cost of about $0.93 to classify 10,000 feedback messages,
compared with 0.829 and $23.25 for gpt-03—a saving of more than 95%. I use a decision cutoff
of 4 because it maintains a reasonable class balance (about 25% positives) and reflects the
annotator’s standard for clear and actionable feedback. I also report results for cutoff = 3 as
a robustness check; model rankings remain consistent, indicating the findings are not sensitive
to small threshold changes.

Table C2 presents examples of constructive feedback from the real data.

D Technical Appendix

D.1 Comparisons to Alternative Instrument Estimation Strategies

The main instrument is a residualized leave-out mean leniency score, based on a reviewer’s
feedback messages in cases involving other developers. Following standard practice (Dobbie
and Song, 2015; Dobbie et al., 2017; Bhuller et al., 2020; Agan et al., 2023), I report F-statistics
without correcting for the fact that the instrument is estimated. This approach has attractive
properties in applied settings.

As Agan et al. (2023) notes, including reviewer fixed effects directly may lead to bias due
to the large number of potentially weak instruments. In addition, my specification includes
many fixed effects (e.g., team-by-year), which are necessary for identifying cases with as-if
random reviewer assignment. Still, it may introduce bias in jackknife IV estimators (Kolesar,
2013). Using a continuous instrument also enables the estimation of marginal treatment effects
(Heckman and Vytlacil, 2005).

While convenient, the main estimation strategy does not account for the fact that the in-

strument is itself estimated. To assess robustness, I explore several alternative approaches

67

Table C2: Examples of Reviewer Feedback and Constructiveness Scores

Feedback Message Constructive Score
Agree 0 0
Just checked one more time - now it’s okay 0 1
Same advice on the assets point of view 0 2
Explain why there are private fields in this visitor. too mul- 0 3

tiple of them

I don’t think all introspector errors are reported in the domain 1 4
status. We need to make sure that all severe jrf ones are

You only need to define the acronym once, so I'd suggest doing 1 5
it in the text not the title

This should be an async function that can use await and, as 1 6
a result, standard trycatch blocks

We need to be generating a new nonce used to encrypt here 1 10
rather than reusing the one that was used previously to en-

crypt the keyring. Otherwise there’s a crypto bug in this that

would allow an attacker to combine the old ciphertext with

the new ciphertext in a way that could reveal the xor’d plain-

text of the two messages.

commonly used when IV estimates may be biased due to many (potentially weak) instruments.
Table D1 reports these results. Column (1) repeats the main 2SLS estimates using the residu-
alized leave-out mean leniency score. Column (2) reports estimates from a limited information
maximum likelihood (LIML) model using all reviewer dummies as instruments (Bekker, 1994;
Angrist and Frandsen, 2022). Column (3) presents results from the modified bias-corrected
two-stage least squares (MBTSLS) estimator of Kolesar et al. (2015), and column (4) shows
estimates from the unbiased jackknife IV estimator (UJIVE) of Kolesar (2013).In each case,

the estimated coefficients are nearly identical to the main 2SLS results.

68

Table D1: Different IV Estimation Strategies

(1) (2) (3) (4)
Main LIML MBTSLS UJIVE
Panel A: Toxic Feedback
Code Quantity Ever -0.074* -0.074* -0.074* -0.077%*
(0.039) (0.039) (0.039) (0.039)
Code Quantity Log -0.558%* -0.558%* -0.558%* -0.569%*
(0.328) (0.328) (0.328) (0.328)
Non-Code Quantity Ever -0.019 -0.019 -0.019 -0.020
(0.019) (0.019) (0.019) (0.019)
Non-Code Quantity Log -0.138 -0.138 -0.138 -0.143
(0.145) (0.145) (0.145) (0.145)
Case Quality -0.050 -0.050 -0.050 -0.049
(0.044) (0.044) (0.044) (0.044)
Code Quality -0.091%%* .0.091*%** -0.091*** -0.091***

(0.033) (0.033) (0.033) (0.033)
Panel B: Positive Feedback

Code Quantity Ever -0.033%% -0.033** -0.033** -0.033**
(0.017) (0.017) (0.017) (0.017)

Code Quantity Log -0.192 -0.192 -0.192 -0.190
(0.136) (0.136) (0.136) (0.135)

Non-Code Quantity Ever -0.011 -0.011 -0.011 -0.011

(0.008) (0.008) (0.008) (0.008)
Non-Code Quantity Log ~ -0.130** -0.130** -0.130** -0.130**
(0.061) (0.061) (0.061) (0.061)

Case Quality 0.022 0.022 0.022 0.022
(0.018) (0.018) (0.018) (0.018)
Code Quality 0.044*** 0.044*** 0.044%*%*% 0.044%**

(0.013) (0.013) (0.013) (0.013)
Panel C: Constructive Feedback

Code Quantity Ever -0.046*%%* _0.046*** -0.046*** -0.046***
(0.010) (0.010) (0.010) (0.010)
Code Quantity Log -0.072 -0.072 -0.072 -0.071

(0.080) (0.080) (0.080) (0.080)
Non-Code Quantity Ever ~ -0.009* -0.009* -0.009* -0.009*
(0.005) (0.005) (0.005) (0.005)

Non-Code Quantity Log -0.023 -0.023 -0.023 -0.023
(0.035) (0.035) (0.035) (0.035)
Case Quality -0.100*** -0.100*** -0.100*** -0.099***
(0.010) (0.010) (0.010) (0.010)
Code Quality -0.072%FF* - _0.072%** _0.072%** _0.072%**
(0.008) (0.008) (0.008) (0.008)
Team x Year FE v v v v
Decile d—1 activity v v v v
Decile d-1 message v v v v

Notes: This table reports 2SLS estimates using alternative instrument construction methods, as indicated in the column headers. All
specifications include team-by-year fixed effects and developer controls. OLS and reduced-form estimates for the same specification
appear in Table 5. Standard errors are clustered at the reviewer level. Column (1) presents the main 2SLS estimates using the
residualized leave-out mean leniency score. Column (2) applies limited information maximum likelihood (LIML) with all reviewer
dummies as instruments. Column (3) reports modified bias-corrected 2SLS estimates following Kolesér et al. (2015). Column (4)
reports UJIVE estimates following Kolesar (2013). *p < .10, ** p < .05, *** p < .01.

69

D.2 Forecast-Based VA Estimator

I estimate reviewer value-added (VA) for the full sample using the forecast-based estimator
proposed by Chetty et al. (2014). Equation (8) models developer code output Yy, after receiv-
ing feedback from reviewer j, controlling for lagged output Y;,_, developer characteristics X,
and team characteristics Sy. Reviewer effects are captured through a vector of indicators Tj,
with coefficients 0 representing reviewer value-added. From this regression, I obtain residuals

Y*

i+ Dy subtracting the fitted values excluding reviewer fixed effects, as shown in Equation (9).
I then compute Y}, the average residual for reviewer j in year ¢, defined in Equation (10). Fi-
nally, Equation (11) forecasts reviewer VA ~;; based on the leave-one-year-out residual averages
?J’-*t_. Here, t denotes the first post-review week. Reviewers are assigned in week ¢t — 1, and
code produced in that week predates the review. Hence Y, ; refers to developer output two

weeks before assignment, and Yj;; measures output in the first week after the review.

Yisjt = Bo + Yii—181 + Xit' B2 + Sst' B3 + T5'0 + €451 (8)
ii;jt = Yige — [Bo + Yig—151 + Xit' B2 + Sst' B3] 9)

7 1 *
Yi=— > Y (10)

Mt iefij(it)=5)
'th :W0+Y§t—/7r1 —|—th (11)

The forecast-based estimator offers several advantages for estimating reviewer value-added.
First, instead of including reviewer fixed effects directly in the regression, the model omits them
from the fitted values. This yields a modified residual Y*isjt (Equation (9)) that captures
variation not explained by past developer output or covariates. This step reduces attenuation
bias caused by measurement error in the covariates. Second, to avoid overfitting and make
use of prior information, the model predicts reviewer value-added in week ¢ using the average
residuals from all other weeks (a leave-week-out approach). This produces 4jt, the best linear
predictor of reviewer j’s impact in week ¢. Third, Equation (11) allows the reviewer VA to vary

over time.

70

E GitHub - LinkedIn Data Construction

The goal is to build a panel on developers’ communications, activities, and employers by
merging GitHub with Revelio Labs. I obtain names, employers, biographies, profile images,
locations, and emails from the GitHub API. Because profiles are used for career search, devel-
opers tend to report accurate details (El-Komboz and Goldbeck, 2024). In the random reviewer
assignment sample, about 70% of developers list a LinkedIn profile, personal website, or other
social account on GitHub, and many reuse the same photo, which aids identification.

The matching process proceeds in three steps. First, I create direct matches for developers
who link their LinkedIn URL on GitHub or vice versa. Second, for unmatched cases, I construct
a match pool using names, locations, employment histories, and biographies. To account for
naming variations, I match on common nicknames (for example, “Alex” for “Alexander” or
“Alexandra”), abbreviated names (for example, “Tina L.” for “Tina Liu”), and names with
or without middle names (for example, “Tina Jin Liu” simplified to “Tina Liu”). The pool
includes exact matches, first name with last initial matches, and matches involving middle
names; developers with entirely different names or typos are excluded. Third, I incorporate
additional characteristics such as position, firm, and geographic location to identify the best
LinkedIn candidate for each GitHub developer. A research assistant reviews all candidates in
the pool and selects the best match. I also tested an LLM-based approach (GPT 4o-mini and

DeepSeek R1) to select matches, but its performance was inferior to manual review.

71

F Additional Figures and Tables

Figure F1: Reviewer Value-Added Based on Developer Code Quantity vs. Code Quality

Reviewer VA Quantity

Coef.=0.632***
(0.002)

T T
-2 -15 -1 -.05 0 .05 A A5 2
Reviewer VA Quality

Notes: This figure compares reviewer VA estimates based on two different developer outcomes: code quantity (y-
axis) and code quality (x-axis) in the full sample. Reviewer VA is estimated using the forecast-based estimator by
Chetty, Friedman, and Rockoff (2014). The fitted line shows a positive and statistically significant relationship
between the two measures, indicating that reviewers who increase developer output also tend to improve code
quality.

Figure F2: Developer Weekly Code Quantity vs. Code Quality

(a) Without Developer Fixed Effect (b) With Developer Fixed Effect

Coef.=0.221***
(0.002)

Weekly Code Quality(Standardized)

Coef.=0.183"**
(0.001)

Weekly Code Quality(Standardized)
'S

i T 7 i
0- ; ; ‘ -25 -15 5 15

-5
-2 4 0 1 2 Weekly Code Quantity(Standardized)
Weekly Code Quantity(Standardized) Developer Fixed Effect

Notes: The number of observations is 256,998 in panel (a) and 253,050 in panel (b).

72

JUSISJIP SSOIDe JUSTUNIISUL

T0°0 > @ yx ‘GO0 > @ 4 0T°0 >
:S[oAd] 90UROYIUSIS “sosoyjuared UT SIOLD PIRPURIS 'SIOMO[[O] JO Ioquunu Aq ()[— SUWN[O)) pueR ‘(qNHIIL) U0 IBaA dAIJOR)SI UO pose() soualiodxe Aq
8-, summnjoy) ‘A31a130€ ypam-a1d £q 9-¢ suwnio)) ‘(SIAYI0 'SA WRISY) 90el Aq f—¢ sumnio)) ‘1epuad £q ojdures oy ogeredss g—1 summnio)) -syifds ojdures

9} UO UOISIOOP S,JOMOIADI 9} JO SUOISSOISAI WIOIJ SOIISIRIS- PUE SIUSIIe0d 98e)s-4siy oY) sy10dol o[qe} SIY], :S920N

LOF'S6T 606°€86 60%' 65 896‘6TL LT0'0GE T9T'6T8 €€9°26G CI6'60T TC6'68 T6L'6SL N
LE'8SYL STIFPR'GS 99'GRO‘SC OT'SLLGE 0€'896°0T OF'S8LV'LY €8°96T°9C TT'EFEL FSFR6'G 69°09L°]€ 18-
(010°0) (¥00°0) (200°0) (200°0) (L00°0) (¥00°0) (€00°0) (0t00) (110°0) (¥00°0)
#xx6780 4xxL98°0 +%xG88°0 #4x0G8°0 5xx6G8°0 4xx298°0 55x828°0 54xG88°0 54x998°0 5440080 SSOUSAIIONIISUO)) TOMIIAY]
QAIONIISUO))) [oued
F9'8L0'F TR'EEL'ST 92°¢16°LT IS'ELTOT 6G°088'8 L0°CSC'9C E€RLPS'CT SFF96'C G9'GCC'C TLILF'ST 18-
(€10°0) (500°0) (900°0) (900°0) (600°0) (600°0) (L00°0) (ct00) (L10°0) (900°0)
4k 180 4x4¥T80 +4xG78°0 #36L08°0 5559780 4x4CT8°0 54x9T8°0 544CEQ0 54x68L°0 544918°0 AJATYISOJ ToMO1AdY]
aAIsod ‘g [oued
291GV V€'L62'C GT'0L6 97°998‘T 02289 F¥IeL'c LT'€T9T FO'TST 867 0GL80°C RITSER
(¥£0°0) (610°0) (€20°0) (910°0) (820°0) (¥10°0) (810°0) (9¥0°0) (9%0°0) (610°0)
*xxGGL°0 wxx 1040 %xkxGLL0 +xxG0L0 *xx269°0 *xx90L°0 ok VTL0 wkxLCL 0 %xx80L°0 sk 1040 £)TOIXO], Tomaraoy
JIXOJ, 'V [oued
IO\ SsoT QIOTN SSoT IO\ SSoT SI910 uersy SI910) SR

(szomoroq) A Nds

(eouaraadxy) AT 1dS

(£312190V) 11T N1dS

(uersy) 11 ¥1ds

(zopuen) 1 y1ds

AYIDTHOJOUOIN JO 389, T O[q®],

73

Table F2: Assessing Bias in On-Platform Feedback Effects

Interaction s.e.(Interaction) p-value

Toxic Feedback

Code Quantity Ever 0.199 0.176 0.261
Code Quantity Log —1.625 1.584 0.305
Non-Code Quantity Ever 0.033 0.101 0.744
Non-Code Quantity Log 0.557 0.637 0.382
Case Quality 0.082 0.202 0.684
Code Quality 0.206 0.165 0.210
Positive Feedback

Code Quantity Ever —0.004 0.067 0.949
Code Quantity Log 0.685 0.451 0.129
Non-Code Quantity Ever 0.014 0.037 0.714
Non-Code Quantity Log 0.113 0.202 0.576
Case Quality —0.000 0.068 1.000
Code Quality —0.058 0.052 0.263
Constructive Feedback

Code Quantity Ever 0.033 0.034 0.326
Code Quantity Log —0.369 0.236 0.118
Non-Code Quantity Ever —0.014 0.018 0.439
Non-Code Quantity Log 0.251** 0.113 0.026
Case Quality —0.012 0.036 0.737
Code Quality 0.019 0.026 0.463
Team x Year FE v v v
Decile d-1 activity v v v
Decile d-1 message v v v

Notes: The “Interaction” column reports the coefficient on I, ; X Cip,.
The Co-located dummy Cj,, equals 1 if all team members are in the
same country. See Appendix A.3 for details on how team location is con-
structed. Outcome variables are 1-4 weeks after the developer received
feedback. Standard errors are clustered at the reviewer level. * p < .10,

= p < .05, ** p < .0L.

74

Figure F3: Comparison between Developers and Reviewers

Share Male Share Asian
0.95 0.3
0.2
2090 0.89 5 0.2 *
s £ 0.13
o 0.86 g
© ®©
& 0.85 501
Developer Reviewer Developer Reviewer
GitHub Followers 8 Experience (Years)
w 150 57
—_ —
g ©6 533
= 100 < >
u? 82.78 §
Q T 4
S k=
L 50 g3
© &
2
0 1
Developer Reviewer Developer Reviewer
Yearly GitHub Activities
5000
%)
Q@
=
s 4000
=]
Q
< 3000
Ke]
=}
2000
G]
>
= 1000 667.
L
0

Developer Reviewer

Notes: Each panel compares characteristics between developers and reviewers on GitHub. Developers are de-
fined as those who never serve as reviewers. The sample includes teams that adopt random reviewer assignment.
“Share Male” and “Share Asian” report the average share across individuals (red diamonds). “GitHub Follow-
ers,” “Experience,” and “Yearly GitHub Activities” display distributions and mean values (red diamonds) using
standard box plots. The black line inside each box represents the median; whiskers extend to 1.5 times the
interquartile range. GitHub followers are scraped as of 2023. Experience is calculated as 2024 minus the first
year a developer appeared on GitHub. Yearly GitHub activities measure the total number of activities in the
most recent calendar year.

5

Figure F4: Output Quality Validation

(a) Case Quality (b) Code Quality

.06 .03+

.04+ 02

.02+
.01

Coef.=0.032***
(0.002)

Case Correct Rate
Code Correct Rate

Coef.=0.015***
(0.001)

-.02+

-.01+

-.04+ [

0 5 . 0 5
Standardized Followers Standardized Followers
FE: Case Number FE: Case Number

Notes: This figure validates output-quality measures. The x-axis displays each developer’s standardized follower
count (as a proxy for reputation), and the y-axis shows their average Case Quality and Code Quality as defined
in Appendix A.5. The binscatter controls for the total number of cases per developer to account for varying
activity levels. We observe that developers with more followers exhibit higher correct rates.

Figure F5: Cluster at Team Level
(a) Code Quantity (b) Code Quality

“1 05 0.04 (

l

=

-0.19
-.05

-0.07 J

_14 -0.09

Effect on Log(Code Lines): Next 1-4 Weeks
Effect on Code Correct: Next 1-4 Weeks

-.151

T T T T T T
Toxic Positive Constructive Toxic Positive Constructive

Notes: Panels (a) and (b) show estimates of feedback on code quantity and code quality for developers in the
next 1-4 weeks. Standard errors are clustered at the team level. Lines report 90% confidence intervals.

76

Figure F6: IV Model with Three Feedback Dimensions

(a) Code Quantity (Extensive) (b) Code Quantity (Intensive)
2]
£ £ [—
= S -0.07
hi A
- - -0.21
= i -
3 0.04 ~0.05 g
g ~0.06 ’g
= 3
8 :
e 1 [$)
5] - >
@ 3
S 5
k: g
i woe |
-15
T T T T T T
Toxic Positive Constructive Toxic Positive Constructive
(c) Non-Code Quantity (Extensive) (d) Non-Code Quantity (Intensive)
.02 A
4 2
3 T o
i o4 i]
- o -0.02
3 3
= -0.01 = 1]
@ -0.01 3
LOI) -.02 0.02 LT) —0.14 -0.14
é Z%, _2
=3 =
5 s -3
5 3
& &
-.06 -4
T T T T T T
Toxic Positive Constructive Toxic Positive Constructive
(e) Case Quality (f) Code Quality
.05 .05
0.03
° o
= 0.00 =
N :
3 z
i -0.02 8
_ | 15 -
8 8
a <
o 3 007 |
a o}
(&) 4 2 1
s - -0.10 J S -
3 3
& i
-.15 -.15
T T T T T T
Toxic Positive Constructive Toxic Positive Constructive

Notes: Baseline sample of cases for random reviewer sample from 2017 to 2023. Controls include all variables
listed in Table 5. The results for each type of feedback are from the augmented IV models given by equations (3)—
(6). Standard error is clustered at the reviewer level. Lines report 90% confidence intervals.

7

Figure F7: Controlling for Reviewer Characteristics

(a) Reviewer Characteristics and Reviewer Toxicity IV

Reviewer Male=True [

*

Reviewer Male=Missing - [

L 4

Reviewer Race=GreaterAfrican - [

*

Reviewer Race=GreaterEuropean -

Reviewer Race=Missing -|

Reviewer: First year recorded activity ——
Reviewer: Number of followers - e
T T t T 1
-2 -1 0 1 2
& Reviewer Toxicity IV
(b) Code Quantity (c) Code Quality

(2} -
':'3 2 05 0.04 I
2 -0.07 5 l
3 =
i 20.20 A
= - 07
2 8
= P4
g =
5 8 -.05+
P _6] 055 <
S 3
< 8 -007 |
S -8 c
c o -1
2 5
k] 2
2 4 i
w

-15+

To‘xic Pos‘itive Const‘ructive To‘xic Pos‘itive Const‘ructive

Notes: Panel (a) reports OLS regression coefficients for reviewer toxicity based on standardized reviewer charac-
teristics. The controls include gender, race, the number of followers (in 2023), the first year of GitHub activity
(seniority), and reviewer activity in the past year. Standard errors are clustered at the reviewer level. Panels (b)
and (c) report the main outcomes of code quantity and code quality when controlling for reviewer characteristics
listed in panel (a). The sample and existing controls are the same as in Table 5.

78

Figure F8: Controlling for Reviewer IV in Feedback Types Other Than the Focal Type

(a) Code Quantity (Extensive) (b) Code Quantity (Intensive)
o
2 2 I
3 O
= 2 -0.08
i <
-] s 021
3 . -0.04 1 g
e - -0.05 J &
8 B
3 5
g g
o o
= -1 =
g e
w — -8
5 5
© ©
-.154
Toxic Positive Constructive Toxic Positive Constructive
(c¢) Non-Code Quantity (Extensive) (d) Non-Code Quantity (Intensive)
.02 14
k) <
= s
A 0 a \;4
= 5 -0.03
x
2 2
= -0.01 001 5)
§ —o2-{ 002 $ —0.13
4 5 2]
2 g
S ~
5 5 -3
w w
-.06 —4-
Toxic Positive Constructive Toxic Positive Constructive
(e) Case Quality (f) Code Quality
.05+ .05 [
4] 7] 0.03
s =
¥ 0.01 ¥
T o S ot
: | :
o z
2 i
§ -0.02 §
2 <
@D 054 [)
Q ©
a o
S o
5 § -007 |
w1 ~0.10 J -
Toxic Positive Constructive Toxic Positive Constructive

Notes: Baseline sample of cases for random reviewer sample from 2017 to 2023. Controls include all variables
listed in Table 5. Each panel reports augmented IV estimates that add reviewer-style instruments for the non-
focal feedback dimensions as controls. The toxicity results control for the reviewer positivity and constructiveness
instruments; the positivity results control for the reviewer toxicity and constructiveness instruments; and the
constructiveness results control for the reviewer toxicity and positivity instruments. Standard errors are clustered
at the reviewer level. Lines report 90% confidence intervals.

79

Figure F9: Heterogeneous Effects of Feedback by Asian vs. White (Next 1-4 Weeks)

(a) Toxic Feedback (b) Positive Feedback (c) Constructive Feedback

2 5 24

1 D.O? 0. ug
} -0.06

~0.04 oo
w 0.12 037 'OT
5]
o]
4
=]

T e

] o

Code Lines Code Code Lines Code Code Lines Code
Log Accept Log Accept Log Accept

B Asian O White O Asian O White O Asian O White

Notes: This figure shows the heterogeneous effects of feedback on developer outcomes in the 1-4 weeks following
feedback, by developer race. Dark bars represent Asian developers; light bars represent White developers.
Effects are estimated with standard errors clustered at the reviewer level. Vertical lines indicate 90% confidence
intervals.

Figure F10: Heterogeneous Effects of Feedback by Male vs. Female (Next 1-4 Weeks)

(a) Toxic Feedback (b) Positive Feedback (c) Constructive Feedback

o

0.04 0.04
I —
-0.05

*1 t
~0.11 -0.05 -0.08 -0.0: -0.07
069 -0.23
] -21 o019

Code Lines Code Code Lines Code Code Lines Code
Log Accept Log Accept Log Accept

= Male O Female O Male O Female O Male O Female

Notes: This figure shows the heterogeneous effects of feedback on developer outcomes in the 1-4 weeks following
feedback, by developer gender. Panels (a)—(c) report estimates for toxic, positive, and constructive feedback,
respectively. Dark bars represent male developers; light bars represent female developers. Outcomes include
code and non-code contributions (ever and log) and whether code or non-code content was retained. Standard
errors are clustered at the reviewer level. Vertical lines denote 90% confidence intervals.

80

Figure F11: Heterogeneous Effects of Feedback by First vs. Repeat Exposure (Next 1-4 Weeks)

(a) Toxic Feedback (b) Positive Feedback (c) Constructive Feedback
|) 0.05 {
—0.19! 70.17} -0.02 :t “
— 092 o] 017 0.18 ’7‘\“4

Notes: This figure shows the heterogeneous effects of reviewer feedback by whether the feedback was given on
a developer’s first case (“First”) or later submissions (“Later”). Dark bars represent first-time feedback; light
bars represent later feedback. Effects are estimated with standard errors clustered at the reviewer level. Vertical
lines show 90% confidence intervals.

Figure F12: Heterogeneous Effects of Feedback by Developer Ability (Next 1-4 Weeks)

(a) Toxic Feedback (b) Positive Feedback (¢) Constructive Feedback

0+] —034
0.04
04

-04-
05| ,
~0.05 =06 ‘ 0.04

5 1 15 2 5 1 15 2 5 1 15

B High-Ability O Low-Ability B High-Ability O Low-Ability B High-Ability & Low-Ability

Notes: This figure shows how the effects of reviewer feedback vary by developer ability, defined using lagged
code quality. Developers are split into high- and low-ability groups based on their past performance. Dark bars
represent high-ability developers; light bars represent low-ability developers. Standard errors are clustered at
the reviewer level. Vertical lines indicate 90% confidence intervals.

81

Figure F13: Heterogeneous Effects of Feedback by New Hires vs. Incumbents (Next 1-4 Weeks)

(a) Toxic Feedback (b) Positive Feedback (¢) Constructive Feedback

—o4

04 . 054 J _08
-0.07 -0.07 }

-0.05

—14 -08
-0.10 \—7

5 1 s H 5 i s 2 5 1 15 2

B New Hires O Incumbents O New Hires O Incumbents O New Hires O Incumbents

Notes: This figure shows the heterogeneous effects of reviewer feedback by worker status as a new hire (within
the first two months on a team) or as an incumbent (longer than two months). Dark bars represent new hires;
light bars represent incumbents. Effects are estimated with standard errors clustered at the reviewer level.
Vertical lines show 90% confidence intervals.

Figure F14: Heterogeneous Effects in More vs. Less Hierarchical Teams (Next 1-4 Weeks)

(a) Toxic Feedback (b) Positive Feedback (c) Constructive Feedback

13
i

. |
|

T T T T T T T T T T T T
5 1 15 2 5 1 15 2 5 1 15 2

= More Hierarchical Teams O Less Hierarchical Teams — @ More Hierarchical Teams O Less Hierarchical Teams i = More Hierarchical Teams. O Less Hierarchical Teams

Notes: The figure shows heterogeneous effects by team hierarchical score (see Section 4). Dark bars represent
hierarchical teams with a score greater than 0.5; light bars represent flat teams. Effects are estimated with
standard errors clustered at the reviewer level. Vertical lines denote 90% confidence intervals.

82

Figure F15: Gender Match Effects of Feedback on Developer Productivity

(a) Toxic Feedback

5
0.17
*‘ 0.09
0
0.00
-0416

-.54

—1

O Female->Female @ Male->Female B Female->Male ©&O Male->Male

(b) Positive Feedback (c) Constructive Feedback

0.03 0.03 0.04 _ad
. ~0[30

O Female->Female = Male->Female ® Female->Male O Male->Male O Female->Female B Male->Female ® Female->Male O Male->Male

Notes: This figure shows the heterogeneous effects of demographic match between reviewer and developer. For
example, “Female — Male” indicates feedback from a female reviewer to a male developer. Standard errors are
clustered at the reviewer level. Vertical lines represent 90% confidence intervals.

83

Figure F16: Race Match Effects of Feedback on Developer Productivity

(a) Toxic Feedback

—2 -
O White->White B Asian->White B White—>Asian @O Asian->Asian
(b) Positive Feedback (c) Constructive Feedback
24 R
0.13
0.07
0 0
-0,06
_2d =19 -0/09
—ol26 ~0/13
—4- -2
-3
6
O White->White @ Asian->White B White->Asian O Asian->Asian O White->White @ Asian->White & White—>Asian O Asian->Asian

Notes: This figure shows the heterogeneous effects of demographic match between reviewer and developer. For
example, “White — Asian” indicates feedback from a white reviewer to a Asian developer. Standard errors are
clustered at the reviewer level. Vertical lines represent 90% confidence intervals.

84

Figure F17: Distribution of Team Hierarchy Score

(a) Teams with Size 5

8000

7000

ize=5)

N 6000

5000

4000

w
8
8
8

Number of Teams (Team Si

800

a
8
s

Number of Teams

3
s

(b) Random Reviewer Sample

| s llL U,

0.4 0.6
Hierarchy Score

0.0

O:A O:G
Hierarchy Score

Notes: The figure plots the distribution of team hierarchy scores without restricting team size, using data
from 2017 to 2023. Panel (a) shows teams with 5 members but excludes those with a single case, as they
automatically receive a score of 1. The random reviewer sample includes only teams with random reviewer
assignment, more than two reviewers per year, and at least 10 cases reviewed per reviewer annually. Higher
scores indicate that review responsibilities are concentrated within a small subset of team members, while lower
scores reflect a more evenly distributed review structure. The unit of observation is the team—year.

Figure F18: The Effect of Constructive Feedback on Productivity: An Alternative Cutoff

24
0 =
\—J -0.01 -0.0
Lo.0 ~0.03
L -0.1
-0.14
_od
—44
-6 T T T T T T
Code Code Non-Code Non-Code Case Code
Ever Log Ever og Quality Quality

Notes: I construct a binary “constructive” label from the LLM-predicted score, using a cutoff of >4 in the main
analysis in Figure 6d. To assess sensitivity, I lower the cutoff to > 3 —thereby classifying more feedback as
constructive—and reestimate the leave-developer-out reviewer constructiveness instrument. Lines report 90%

confidence intervals.

85

Figure F19: Heterogeneous Effects of Feedback by Multi-location Team Structure

(a) Toxic Feedback

154

2|

T T T T T T
Code Lines Code Lines ~ Non-Code Non-Code Case Code
Ever Log Ever Log Correct Correct

= Co-located O Multi-located

(b) Positive Feedback (c) Constructive Feedback
2 2
S B 3%
0.
o 0.0l 1 1
-0.01
-0.04
-0.07
-0.13
_2 . 0.08-0.07
2 0. 9—0. 1
024036
-0.32
_4
_44
_64
Code‘Lmes Code‘Lmes Non—‘Code Non—‘Code Ca‘se Co‘de Code‘Lines Code‘Lines Non—‘Code Non—‘Code Ca‘se ‘
Ever Log Ever Log Correct Correct Ever Log Ever Log Correct Correct
@ Co-located O Multi-located O Co-located O Multi-located

Notes: This figure shows the heterogeneous effects of reviewer feedback by team members in the most represented
country, which is below the sample median, indicating more geographically dispersed teams. I estimate the
effect in each subsample. Baseline sample of cases for the random reviewer sample from 2017 to 2023. Controls
include all variables listed in Table 5. Standard errors are clustered at the reviewer level. Vertical lines show
90% confidence intervals.

86

Figure F20: Effect of Feedback on Developer Outcomes in Other Teams

(a) Code Quantity (b) Non-Code Quantity

0.16
0.45

-0.03

-4-
o4

Effect on Log(Code Lines): Post 1-4 Weeks
Effect on Log(Non-Code): Post 1-4 Weeks

-0.14
e |
-0.04 \Tg

-0.09 _a
—4-
-84 -84

T T T T T T
Toxic Positive Constructive Toxic Positive Constructive

Notes: This figure shows the 2SLS estimates of receiving feedback in a focal team on a developer’s productivity
in other teams during the following 1-4 weeks. Standard error is clustered at the reviewer level. Lines report
90% confidence intervals.

Figure F21: Effect of Feedback on Developer Outcomes

(a) Code Quantity (b) Number of Cases

(2]
x
3
s 2
v o]
- s 0.1
3 | E— A -0.57
& ~0.07 %
3 -0.19 Z Ll
£ o
2 2 238
° [$)
<1 ES
o 5
E -0.56 5
5 _sf o
8
= Dep Mean: 2.28
w Dep Mean: 5.02 6] P
T T T
T T — Toxic Positive Constructive
Toxic Positive Constructive

Notes: This figure reports 2SLS estimates of the effect of a given feedback type on developer outcomes within the
same team during weeks 14 after the feedback. The sample includes teams with random reviewer assignment,
at least three reviewers per year, and reviewers with at least 10 cases per year. Standard errors are clustered

by reviewer, and lines show 90% confidence intervals.

87

Figure F22: Distribution of Predicted Feedback Probability

(a) Conditional on Toxic Feedback (b) Conditional on Positive Feedback

Fraction of Toxic Feedback
Fraction of Positive Feedback

5 6 7 8 9 1 5 6 7 8 9 1
Toxic Score Positive Score
(c) Conditional on Constructive Feedback (d) Constructive Feedback Cutoff

Non—Cothructive <——

———> Constructive

Fraction of Feedback

Fraction of Constructive Feedback

4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Constructive Score Constructive Score

Notes: These figures illustrate the distribution of predicted probability scores for each feedback dimension, based
on all feedback messages written by code reviewers in the random reviewer sample. Figures F22a and F22b
report score distributions for toxic and positive feedback, respectively, based on binary labels assigned by a
pre-trained classifier. Figure F22c¢ shows the distribution of predicted constructive scores generated by GPT-
4o-mini. Figure F22d illustrates the classification of feedback as constructive or non-constructive using a cutoff
on the GPT-based score: messages above the threshold are labeled constructive, while those below are labeled
non-constructive. As a robustness check, I replicate the analysis with an alternative cutoff of 3 (rather than 4);
the results remain qualitatively unchanged (see Figure F18).

88

Figure F23: Toxic Feedback and Replies

(a) Toxic Feedback by Classification Probability Decile

thic null racuact ic cn fyvl, n il
fxxk you you fxxing idiot dluplandfev

this can't be worse. you create something people believe are pojo they are not. you just fxxk up
people's assumptions... :angry:

what the hell are you on about. you are saying this pull request in its current state is affecting
osd. look at the fxxking change xxx @xx noticed it broke, read the fxxking change

<—{so bad power of demo that the whole world is affected.|

S0 annoying

new issue for you to take days to answer. your support is terrible. douglas
high above health cbd oils uk april...

why do you introduce api versions if you never bump them? i'm getting sick of having to write this
again and again.

] | i] |
0.6 0.7 0.8 0.9 1.0
Decile of Toxicity Score for Toxic Messages

(b) Corresponding Replies

< Wﬁt can i say, i hate fun

0.08 -
2
3
=
ﬁ <[pub|ic final fields is code smell imo - i think yyny should just commit to gette
-] -
o 0.07
=
b
c
]
=
w
2
B 0.06 -
g runtime tested the last two days
L
5]
c
2
=]
£
8_ 0.05 -
o
3.: <|they updated the status page]
<|the more the devs postpone it, the larger their technical debt will be]
0.04 -

not so critical for me

'*i as long it is a development version and not direct in the interface to kodi itself is changed is it

Notes: Figure F23 displays randomly selected examples of toxic feedback and their replies in the full sample.
These interactions often occur in contexts where senior members provide feedback or evaluations to juniors, and
developers who receive toxic feedback frequently respond by explaining their actions or decisions.

89

Figure F24: Unequal Distribution of Feedback across Reviewers

(a) Toxic Feedback

100

Y4
(@]
©
% 80 1 81.1% « Most Toxic 10% Reviewers
[}
(0}
L
U 60 60.2% « Most Toxic 5% Reviewers
3
|_
D 40
2
-+
)
g 201
=]
@)
0 !
0 20 40 60 80 100
Reviewer Percentile (Most to Least Toxic)
(b) Positive Feedback (c) Constructive Feedback
~ 100 100
9)
© ()
2 2
8 80 -ld 80
e 2
g @64% of Positive Feedback « Most Positive 20% Reviewers -t;; 4 67% of Constructive Feedback « Most Constructive 20% Reviewers
60 4 C 604
=] o
8 @47.8% « Most Positive 10% Reviewers O #49.7% « Most Constructive 10% Reviewers
()
(s > 40))
g 4 33.8% « Most Positive 5% Reviewers 4(.6 @ 35.5% « Most Constructive 5% Reviewers
E=] =]
L %l £ 20
= S
g O
O 0 T T T T 1 0 T T T "
0 20 40 60 80 100 0 20 40 60 80 100
Reviewer Percentile (Most to Least Positive) Reviewer Percentile (Most to Least Constructive)

Notes: Each panel plots the cumulative distribution of feedback messages across reviewers, ranked from most
to least active in each feedback dimension. The x-axis shows the cumulative share of reviewers, and the y-axis
shows the cumulative share of messages of that type. The unit of analysis is the reviewer. Panel (a) shows toxic
feedback, Panel (b) positive feedback, and Panel (c) constructive feedback. A steeper curve indicates greater
concentration, meaning a smaller share of reviewers accounts for most messages of that type. The sample is
restricted to the random reviewer subsample.

90

G Prediction

To predict reviewer value-added, I apply the Extreme Gradient Boosting (XGBoost) algo-
rithm. For the continuous outcome, the model uses the squared error loss (reg:squarederror)
and is evaluated using root mean squared error (RMSE). I randomly split the data into a train-
ing set (80%) and a hold-out test set (20%). Model training and tuning are performed on the
training set using a five-fold cross-validation approach.

Hyperparameters are selected using a two-stage procedure: a random search explores a wide
parameter space, followed by a grid search that refines the best-performing regions. Repeat the
tuning process separately for each predictor set. Figure G1 examines how feedback explains
variation in reviewer value-added, measured by changes in developer code quality before and
after assignment. Panel (a) uses the random-assignment sample, while Panel (b) uses the
full sample, including both random and non-random assignments. Reviewer value-added is
estimated using the forecast-based estimator of Chetty et al. (2014).

I compare three sets of covariates: (i) feedback quantity, measured as the total number of
messages reviewers send per week; (ii) feedback full features, represented by 768-dimensional
semantic embeddings that capture the linguistic content of feedback; and (iii) feedback quantity
combined with selected features, defined as the weekly shares of toxic, positive and constructive
feedback per reviewer.

The results show that feedback explains substantial variation in reviewer value-added. In
the random sample, feedback quantity alone accounts for about 9 % of the variance. Adding
embeddings increases explanatory power by roughly 18% percentage points. Using only the

selected features captures most of this improvement. The full sample yields similar patterns.

91

Figure G1: Feedback Characteristics Explain Variation in Reviewer Value-Added

(a) Random Assignment Sample (b) Full Sample

Test R2 (%)

9.02 4

0
Quantity Quantity+Full Features Quantity+Selected Quantity Quantity+Full Features Quantity+Selected

Notes: This figure shows how different aspects of reviewer feedback explain the variation in reviewer value-
added (VA), measured by its impact on developer code quality. Each bar reports the test R? from models
using different inputs: Quantity is the number of feedback messages written; Quantity+Full Features adds
768 semantic dimensions of the text; Quantity+Selected includes the weekly shares of toxic, positive, and

constructive feedback per reviewer. Values on the bars indicate the improvement in explanatory power relative
to the quantity-only model.

92

	Introduction
	Data and Setting
	GitHub: World’s Largest Software Coding Platform
	Team
	Team Member
	Case, Reviewer, and Feedback

	Reviewer Assignment
	Random Reviewer Assignment

	LinkedIn Profiles Data
	Developer Productivity Measures
	Sample Restriction and Summary Statistics

	Feedback Classification
	Pre-processing
	Toxic Feedback
	Positive Feedback
	Constructive Feedback
	Classification Results

	Descriptive Facts
	Empirical Strategy
	Assessing the Instrument

	Effects of Feedback on Developer Productivity
	Main Results
	Spillover Effects
	Comparison to OLS
	Heterogeneous Effects
	Threats to Exclusion Restriction
	Assessing Instrument Specificity Across Feedback Types
	Accounting for Reviewer Characteristics in Feedback Effects

	Unobserved Offline Feedback

	Reviewer Quality
	Reviewer Quality Measures: Value-Added (VA)
	Explanatory Power of Feedback for Reviewer VA

	Conclusions
	Demographics and Productivity Measures
	Gender Prediction
	Race Prediction
	Location Prediction
	Code Quantity Measures
	Quality Measures
	Project Stage

	Random Reviewer Assignment
	Feedback Classification
	Toxicity
	Constructiveness

	Technical Appendix
	Comparisons to Alternative Instrument Estimation Strategies
	Forecast-Based VA Estimator

	GitHub - LinkedIn Data Construction
	Additional Figures and Tables
	Prediction

